scholarly journals A Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements

2001 ◽  
Vol 5 (2) ◽  
pp. 187-199 ◽  
Author(s):  
E. Todini

Abstract. The paper introduces a new technique based upon the use of block-Kriging and of Kalman filtering to combine, optimally in a Bayesian sense, areal precipitation fields estimated from meteorological radar to point measurements of precipitation such as are provided by a network of rain-gauges. The theoretical development is followed by a numerical example, in which an error field with a large bias and a noise to signal ratio of 30% is added to a known random field, to demonstrate the potentiality of the proposed algorithm. The results analysed on a sample of 1000 realisations, show that the final estimates are totally unbiased and the noise variance reduced substantially. Moreover, a case study on the upper Reno river in Italy demonstrates the improvements in rainfall spatial distribution obtainable by means of the proposed radar conditioning technique. Keywords: Rainfall, meteorological radar, Bayesian technique, block-Kriging, Kalman filtering

2021 ◽  
Vol 13 (15) ◽  
pp. 2922
Author(s):  
Yang Song ◽  
Patrick D. Broxton ◽  
Mohammad Reza Ehsani ◽  
Ali Behrangi

The combination of snowfall, snow water equivalent (SWE), and precipitation rate measurements from 39 snow telemetry (SNOTEL) sites in Alaska were used to assess the performance of various precipitation products from satellites, reanalysis, and rain gauges. Observation of precipitation from two water years (2018–2019) of a high-resolution radar/rain gauge data (Stage IV) product was also utilized to give insights into the scaling differences between various products. The outcomes were used to assess two popular methods for rain gauge undercatch correction. It was found that SWE and precipitation measurements at SNOTELs, as well as precipitation estimates based on Stage IV data, are generally consistent and can provide a range within which other products can be assessed. The time-series of snowfall and SWE accumulation suggests that most of the products can capture snowfall events; however, differences exist in their accumulation. Reanalysis products tended to overestimate snow accumulation in the study area, while the current combined passive microwave remote sensing products (i.e., IMERG-HQ) underestimate snowfall accumulation. We found that correction factors applied to rain gauges are effective for improving their undercatch, especially for snowfall. However, no improvement in correlation is seen when correction factors are applied, and rainfall is still estimated better than snowfall. Even though IMERG-HQ has less skill for capturing snowfall than rainfall, analysis using Taylor plots showed that the combined microwave product does have skill for capturing the geographical distribution of snowfall and precipitation accumulation; therefore, bias adjustment might lead to reasonable precipitation estimates. This study demonstrates that other snow properties (e.g., SWE accumulation at the SNOTEL sites) can complement precipitation data to estimate snowfall. In the future, gridded SWE and snow depth data from GlobSnow and Sentinel-1 can be used to assess snowfall and its distribution over broader regions.


2014 ◽  
Vol 71 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Martin Fencl ◽  
Jörg Rieckermann ◽  
Petr Sýkora ◽  
David Stránský ◽  
Vojtěch Bareš

Commercial microwave links (MWLs) were suggested about a decade ago as a new source for quantitative precipitation estimates (QPEs). Meanwhile, the theory is well understood and rainfall monitoring with MWLs is on its way to being a mature technology, with several well-documented case studies, which investigate QPEs from multiple MWLs on the mesoscale. However, the potential of MWLs to observe microscale rainfall variability, which is important for urban hydrology, has not been investigated yet. In this paper, we assess the potential of MWLs to capture the spatio-temporal rainfall dynamics over small catchments of a few square kilometres. Specifically, we investigate the influence of different MWL topologies on areal rainfall estimation, which is important for experimental design or to a priori check the feasibility of using MWLs. In a dedicated case study in Prague, Czech Republic, we collected a unique dataset of 14 MWL signals with a temporal resolution of a few seconds and compared the QPEs from the MWLs to reference rainfall from multiple rain gauges. Our results show that, although QPEs from most MWLs are probably positively biased, they capture spatio-temporal rainfall variability on the microscale very well. Thus, they have great potential to improve runoff predictions. This is especially beneficial for heavy rainfall, which is usually decisive for urban drainage design.


2020 ◽  
Vol 21 (2) ◽  
pp. 161-182 ◽  
Author(s):  
Francisco J. Tapiador ◽  
Andrés Navarro ◽  
Eduardo García-Ortega ◽  
Andrés Merino ◽  
José Luis Sánchez ◽  
...  

AbstractAfter 5 years in orbit, the Global Precipitation Measurement (GPM) mission has produced enough quality-controlled data to allow the first validation of their precipitation estimates over Spain. High-quality gauge data from the meteorological network of the Spanish Meteorological Agency (AEMET) are used here to validate Integrated Multisatellite Retrievals for GPM (IMERG) level 3 estimates of surface precipitation. While aggregated values compare notably well, some differences are found in specific locations. The research investigates the sources of these discrepancies, which are found to be primarily related to the underestimation of orographic precipitation in the IMERG satellite products, as well as to the number of available gauges in the GPCC gauges used for calibrating IMERG. It is shown that IMERG provides suboptimal performance in poorly instrumented areas but that the estimate improves greatly when at least one rain gauge is available for the calibration process. A main, generally applicable conclusion from this research is that the IMERG satellite-derived estimates of precipitation are more useful (r2 > 0.80) for hydrology than interpolated fields of rain gauge measurements when at least one gauge is available for calibrating the satellite product. If no rain gauges were used, the results are still useful but with decreased mean performance (r2 ≈ 0.65). Such figures, however, are greatly improved if no coastal areas are included in the comparison. Removing them is a minor issue in terms of hydrologic impacts, as most rivers in Spain have their sources far from the coast.


2017 ◽  
Vol 18 (5) ◽  
pp. 1425-1451 ◽  
Author(s):  
Camille Birman ◽  
Fatima Karbou ◽  
Jean-François Mahfouf ◽  
Matthieu Lafaysse ◽  
Yves Durand ◽  
...  

Abstract A one-dimensional variational data assimilation (1DVar) method to retrieve profiles of precipitation in mountainous terrain is described. The method combines observations from the French Alpine region rain gauges and precipitation estimates from weather radars with background information from short-range numerical weather prediction forecasts in an optimal way. The performance of this technique is evaluated using measurements of precipitation and of snow depth during two years (2012/13 and 2013/14). It is shown that the 1DVar model allows an effective assimilation of measurements of different types, including rain gauge and radar-derived precipitation. The use of radar-derived precipitation rates over mountains to force the numerical snowpack model Crocus significantly reduces the bias and standard deviation with respect to independent snow depth observations. The improvement is particularly significant for large rainfall or snowfall events, which are decisive for avalanche hazard forecasting. The use of radar-derived precipitation rates at an hourly time step improves the time series of precipitation analyses and has a positive impact on simulated snow depths.


2005 ◽  
Vol 2 ◽  
pp. 103-109 ◽  
Author(s):  
M. C. Llasat ◽  
T. Rigo ◽  
M. Ceperuelo ◽  
A. Barrera

Abstract. The estimation of convective precipitation and its contribution to total precipitation is an important issue both in hydrometeorology and radio links. The greatest part of this kind of precipitation is related with high intensity values that can produce floods and/or damage and disturb radio propagation. This contribution proposes two approaches for the estimation of convective precipitation, using the β parameter that is related with the greater or lesser convective character of the precipitation event, and its time and space distribution throughout the entire series of the samples. The first approach was applied to 126 rain gauges of the Automatic System of Hydrologic Information of the Internal Basins of Catalonia (NE Spain). Data are series of 5-min rain rate, for the period 1996-2002, and a long series of 1-min rain rate starting in 1927. Rainfall events were classified according to this parameter. The second approach involved using information obtained by the meteorological radar located near Barcelona. A modified version of the SCIT method for the 3-D analysis and a combination of different methods for the 2-D analysis were applied. Convective rainfall charts and β charts were reported. Results obtained by the rain gauge network and by the radar were compared. The application of the β parameter to improve the rainfall regionalisation was demonstrated.


2010 ◽  
Vol 25 ◽  
pp. 143-153 ◽  
Author(s):  
O. P. Prat ◽  
A. P. Barros

Abstract. A study was performed using the first full year of rain gauge records from a newly deployed network in the Southern Appalachian mountains. This is a region characterized by complex topography with orographic rainfall enhancement up to 300% over small distances (<8 km). Rain gauge observations were used to assess precipitation estimates from the Precipitation Radar (PR) on board of the TRMM satellite, specifically the TRMM PR 2A25 precipitation product. Results show substantial differences between annual records and isolated events (e.g. tropical storm Fay). An overall bias of −27% was found between TRMM PR 2A25 rain rate and rain gauge rain rates for the complete one year of study (−59% for tropical storm Fay). Besides differences observed for concurrent observations by the satellite and the rain gauges, a large number of rainfall events is detected independently by either one of the observing systems alone (rain gauges: 50% of events are missed by TRMM PR; TRMM PR: 20% of events are not detected by the rain gauges), especially for light rainfall conditions (0.1–2mm/h) that account for more than 80% of all the missed satellite events. An exploratory investigation using a microphysical model along with TRMM reflectivity factors at selected heights was conducted to determine the shape of the drop size distribution (DSD) that can be applied to reduce the difference between TRMM estimates and rain gauge observations. The results suggest that the critical DSD parameter is the number concentration of very small drops. For tropical storm Fay an increase of one order of magnitude in the number of small drops is apparently needed to capture the observed rainfall rate regardless of the value of the measured reflectivity. This is consistent with DSD observations that report high concentrations of small and/or midsize drops in the case of tropical storms.


2018 ◽  
Vol 10 (8) ◽  
pp. 1316 ◽  
Author(s):  
Peng Bai ◽  
Xiaomang Liu

The sparse rain gauge networks over the Tibetan Plateau (TP) cause challenges for hydrological studies and applications. Satellite-based precipitation datasets have the potential to overcome the issues of data scarcity caused by sparse rain gauges. However, large uncertainties usually exist in these precipitation datasets, particularly in complex orographic areas, such as the TP. The accuracy of these precipitation products needs to be evaluated before being practically applied. In this study, five (quasi-)global satellite precipitation products were evaluated in two gauge-sparse river basins on the TP during the period 1998–2012; the evaluated products are CHIRPS, CMORPH, PERSIANN-CDR, TMPA 3B42, and MSWEP. The five precipitation products were first intercompared with each other to identify their consistency in depicting the spatial–temporal distribution of precipitation. Then, the accuracy of these products was validated against precipitation observations from 21 rain gauges using a point-to-pixel method. We also investigated the streamflow simulation capacity of these products via a distributed hydrological model. The results indicated that these precipitation products have similar spatial patterns but significantly different precipitation estimates. A point-to-pixel validation indicated that all products cannot efficiently reproduce the daily precipitation observations, with the median Kling–Gupta efficiency (KGE) in the range of 0.10–0.26. Among the five products, MSWEP has the best consistency with the gauge observations (with a median KGE = 0.26), which is thus recommended as the preferred choice for applications among the five satellite precipitation products. However, as model forcing data, all the precipitation products showed a comparable capacity of streamflow simulations and were all able to accurately reproduce the observed streamflow records. The values of the KGE obtained from these precipitation products exceed 0.83 in the upper Yangtze River (UYA) basin and 0.84 in the upper Yellow River (UYE) basin. Thus, evaluation of precipitation products only focusing on the accuracy of streamflow simulations is less meaningful, which will mask the differences between these products. A further attribution analysis indicated that the influences of the different precipitation inputs on the streamflow simulations were largely offset by the parameter calibration, leading to significantly different evaporation and water storage estimates. Therefore, an efficient hydrological evaluation for precipitation products should focus on both streamflow simulations and the simulations of other hydrological variables, such as evaporation and soil moisture.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Jung Mo Ku ◽  
Chulsang Yoo

Hallasan Mountain is located at the center of Jeju Island, Korea. Even though Hallasan Mountain has a height of just 1,950 m, the temperature during the winter decreases below −20 degrees Celsius. On the contrary, the temperature on the coastal areas remains just above freezing. Therefore, large snowfalls in the mountain and rainfall in the coastal areas are very common in Jeju Island. Most of the rain gauges are available around highly populated coastal areas, and snow measurements are available at just four locations on the coastal areas. Therefore, it is practically impossible to distinguish the rainfall and snowfall in Jeju Island. Fortunately, two radars (Seongsan and Gosan radars) operate on Jeju Island, which fully covers Hallasan Mountain. This study proposes a method of using both the radar and rain gauge information to map the snowy region in Jeju Island, including Hallasan Mountain. As a first step, this study analyzed the Z-R and Z-S relationships to derive a fixed threshold of radar reflectivity to separate snowfall from rainfall, and, in the second step, this study additionally considered the observed rain rate information to implement the problem of using the fixed threshold. This proposed method was applied to radar reflectivity data collected during November 1, 2014, to April 30, 2015, and the results indicate that the method considering both the radar and rain gauge information was satisfactory. This method also showed good performance, especially when the rain rate was very low.


Author(s):  
Yang Song ◽  
Patrick Broxton ◽  
Mohammad Reza Ehsani ◽  
Ali Behrangi

The combination of snowfall, snow water equivalent (SWE), and precipitation rate measurements from 39 Snow Telemetry (SNOTEL) sites in Alaska are used to assess the performance of various precipitation products from satellites, reanalysis, and rain gauges. Observation of precipitation from two water years (2018-2019) of the high resolution radar/rain gauge data (Stage IV) product was also utilized to add insights into scaling differences between various products. The outcomes were also used to assess two popular methods for rain gauge undercatch correction. It was found that SWE and precipitation measurements at SNOTELs, as well as precipitation estimates based on Stage IV data, are generally consistent and can provide a range in which other products can be assessed. Time-series of snowfall and SWE accumulation suggests that most of the products can capture snowfall events; however, differences exist in their accumulation. Reanalysis products tend to overestimate snow accumulation in the study area, while current combined passive microwave remote sensing products (i.e., IMERG-HQ) underestimate snowfall accumulation. We found that corrections factors applied to rain gauges are effective in improving their undercatch, especially for snowfall. However, no improvement in correlation is seen when correction factors are applied, and rainfall is still estimated better than snowfall. Even though IMERG-HQ has less skill in capturing snowfall than rainfall, analysis using Taylor plots showed that the combined microwave product does have skill in capturing the geographical distribution of snowfall and precipitation accumulation, so bias adjustment might lead to reasonable precipitation estimates. This study demonstrates that other snow properties (e.g., SWE accumulation at the SNOTEL sites) can complement precipitation data to estimate snowfall. In the future, gridded SWE and snow depth data from GlobSnow and Sentinel-1 can be used to assess snowfall and its distribution over broader regions.


2019 ◽  
Author(s):  
Gaoyun Shen ◽  
Nengcheng Chen ◽  
Wei Wang ◽  
Zeqiang Chen

Abstract. Accurate and consistent satellite-based precipitation estimates blended with rain gauge data are important for regional precipitation monitoring and hydrological applications, especially in regions with limited rain gauges. However, existing fusion precipitation estimates often have large uncertainties over mountainous areas with complex topography and sparse rain gauges, and the existing data blending algorithms are very bad at removing the day-by-day random errors. Therefore, the development of effective methods for high-accuracy precipitation estimates over complex terrain and on a daily scale is of vital importance for mountainous hydrological applications. This study aims to offer a novel approach for blending daily precipitation gauge data, gridded precipitation data and the Climate Hazards Group Infrared Precipitation (CHIRP, daily, 0.05°) satellite-derived precipitation estimates over the Jinsha River Basin for the period of June–July–August in 2016. This method is named the Wuhan University Satellite and Gauge precipitation Collaborated Correction (WHU-SGCC). The results show that the WHU-SGCC method is effective in precipitation bias adjustments from point to surface, which is evaluated by categorical indices. Moreover, the accuracy of the spatial distribution of the precipitation estimates derived from the WHU-SGCC method is related to the complexity of the topography. The validation also verifies that the proposed approach is effective in the detection of precipitation events that are less than 20 mm. This study indicates that the WHU-SGCC approach is a promising tool to monitor monsoon precipitation over Jinsha River Basin, the complicated mountainous terrain with sparse rain gauge data, considering the spatial correlation and the historical precipitation characteristics. The daily precipitation estimations at 0.05° resolution over Jinsha River Basin in summer 2016, derived from WHU-SGCC are available at the PANGAEA Data Publisher for Earth &amp; Environmental Science portal (https://doi.pangaea.de/10.1594/PANGAEA.896615).


Sign in / Sign up

Export Citation Format

Share Document