scholarly journals Temporal stability of soil moisture under different land uses/cover in the Loess Plateau based on a finer spatiotemporal scale

2013 ◽  
Vol 10 (8) ◽  
pp. 10083-10125 ◽  
Author(s):  
J. Zhou ◽  
B. J. Fu ◽  
N. Lü ◽  
G. Y. Gao ◽  
Y. H. Lü ◽  
...  

Abstract. The Temporal stability of soil moisture (TSSM) is an important factor to evaluate the value of available water resources in a water-controlled ecosystem. In this study we used the evapotranspiration-TSSM (ET-TSSM) model and a new sampling design to examine the soil water dynamics and water balance of different land uses/cover types in a hilly landscape of the Loess Plateau under a finer spatiotemporal scale. Our primary focus is to examine the difference among soil water processes, including the wet-to-dry (WTD) process triggered by precipitation and the dry-to-wet (DTW) process caused by radiation among varied land uses/cover types. Three vegetation types and bare land were selected in the sampling scheme. For each land uses/cover type, four microplots (60 cm × 60cm) were established, and the soil moisture was measured at the central point (CP) and four ambient points (AP). The results indicated that (1) the bare land (plot1) was sensitive to the influence of rainfall and radiation compared with other land uses types; (2) Andropogon (plot2) and Spiraea pubescens (plot4) more efficiently represented the average soil moisture of the different land uses/cover in the WTD and DTW processes, respectively, in the CP position. In contrast, the bare land and Artemisia coparia (plot3) seemed to be more representative of the average soil water content in the AP position; (3) the ET-TSSM model demonstrated that, in the WTD processes, although Spiraea pubescens land use reached the net deficit of the soil water storage condition was longest, the vegetated land uses have a higher capacity of water consumption than bare land and more easily affected the serious condition of the soil water deficiency at the end of WTD processes. We concluded that a finer spatiotemporal scale in the TSSM study could be a new method to describe the effect of plant on soil moisture dynamics triggered by precipitation or radiation and that the improvement of the application of the TSSM-based model to hydrological processes could be a promising research subject in the future.

Solid Earth ◽  
2016 ◽  
Vol 7 (1) ◽  
pp. 167-175 ◽  
Author(s):  
H. C. Li ◽  
X. D. Gao ◽  
X. N. Zhao ◽  
P. T. Wu ◽  
L. S. Li ◽  
...  

Abstract. Conserving more soil water is of great importance to the sustainability of arid and semiarid orchards. Here we integrated fish-scale pits, semicircular mini-catchments for hill slope runoff collection, with mulches to test their effects on soil water storage in a 12-year-old dryland jujube orchard on the Loess Plateau of China, by using soil water measurements from April 2013 to November 2014. This experiment included four treatments: fish-scale pits with branch mulching (FB), fish-scale pits with straw mulching (FS), fish-scale pits without mulching (F), and bare land treatment (CK). Soil water was measured using the TRIME®-IPH time-domain reflectometer (TDR) tool in 20 cm intervals down to a depth of 180 cm, and was measured once every 2 weeks in the 2013 and 2014 growing seasons. The results showed that fish-scale pits with mulching were better in soil water conservation. Average soil water storage (SWS, for short) of FB at soil layer depths of 0–180 cm increased by 14.23 % (2013) and 21.81 % (2014), respectively, compared to CK, but only increased by 4.82 % (2013) and 5.34 % (2014), respectively, for the F treatment. The degree of soil water compensation, WS, was employed here to represent to what extent soil water was recharged from precipitation at the end of the rainy season relative to that at the beginning of the rainy season. A positive (negative) WS larger (lower) soil water content at the end of rainy season than at the beginning. For the treatment of FB, the values of WS over the entire soil profile were greater than 0; for the treatment of F, negative values of WS were observed in depths of 60–100 cm in both years. However, the bare land treatment showed negative values in depths of 40–180 cm. This indicated that integrating fish-scale pits with mulching could significantly increase soil water storage by increasing infiltration and decreasing evaporation, and it showed greater soil water storage and degree of soil water compensation compared to fish-scale pits alone. Since the branches used for mulching here were trimmed jujube branches, the cost of mulching materials was largely reduced. Therefore, integration of fish-scale pits with branch mulching is recommended in orchards for soil water conservation on the Loess Plateau and potentially for other regions.


2015 ◽  
Vol 527 ◽  
pp. 543-554 ◽  
Author(s):  
Yunqiang Wang ◽  
Wei Hu ◽  
Yuanjun Zhu ◽  
Ming’an Shao ◽  
Shun Xiao ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 793
Author(s):  
Yan Mu ◽  
Di Wang ◽  
Yanping Wang

Knowledge of changes in soil-water storage (SWS) at multiple scales in apple orchards is important for formulating policies for the scientific management and sound planning of apple plantations on the Loess Plateau in China. In this study, we measured precipitation, partitioned evapotranspiration (ET) into canopy interception, transpiration, and soil evaporation, and calculated the changes in SWS using the water-balance method at multiple scales in two neighbouring apple orchards (8 and 18 years old) on the Loess Plateau from May to September in 2013, 2014, 2015, and 2016. The results showed that ET was consistently lower for the 8- than the 18-year-old orchard in each year at the same scale (p < 0.05). The changes in SWS differed between the two orchards at the same scale, but the trends of change were similar in each year. The trend of the change in SWS at the same scale differed amongst the years for both orchards. The maximum supply of water from soil reservoirs for the two orchards also differed at different scales in each year and was higher at a daily cumulative scale than a monthly and annual scale in 2013, 2014, and 2016. The daily cumulative scale was thus a more suitable scale for representing the maximum contribution of the soil reservoir to supply water for the growth of the orchards during the study periods. Changes in SWS at a daily cumulative scale should be considered when assessing the effect of apple orchards on regional soil reservoirs on the Loess Plateau or in other water-limited regions.


Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 37 ◽  
Author(s):  
Yan Liang ◽  
Shahbaz Khan ◽  
Ai-xia Ren ◽  
Wen Lin ◽  
Sumera Anwar ◽  
...  

Dryland winter wheat in the Loess Plateau is facing a yield reduction due to a shortage of soil moisture and delayed sowing time. The field experiment was conducted at Loess Plateau in Shanxi, China from 2012 to 2015, to study the effect of subsoiling and conventional tillage and different sowing dates on the soil water storage, Nitrogen (N) accumulation, and remobilization and yield of winter wheat. The results showed that subsoiling significantly improved the soil water storage (0–300 cm soil depth) and increased the contribution of N translocation to grain N and grain yield (17–36%). Delaying sowing time had reduced the soil water storage at sowing and winter accumulated growing degree days by about 180 °C. The contribution of N translocation to grain yield was maximum in glume + spike followed by in leaves and minimum by stem + sheath. Moreover, there was a positive relationship between the N accumulation and translocation and the soil moisture in the 20–300 cm range. Subsoiling during the fallow period and the medium sowing date was beneficial for improving the soil water storage and increased the N translocation to grain, thereby increasing the yield of wheat, especially in a dry year.


2020 ◽  
Author(s):  
Weidong Guo ◽  
Andrew Pitman ◽  
Jun Ge ◽  
Beilei Zan ◽  
Congbin Fu

&lt;p&gt;To resolve a series of ecological and environmental problems over the Loess Plateau, the was initiated at the end of 1990s. Following the conversion of croplands and bare land on hillslopes to forests, the Loess Plateau has displayed a significant greening trend with soil erosion being reduced. However, the GFGP has also affected the hydrology of the Loess Plateau which has raised questions whether the GFGP should be continued in the future. We investigated the impact of revegetation on the hydrology of the Loess Plateau using high resolution simulations and multiple realisations with the Weather Research and Forecasting (WRF) model. Results suggests that land cover change since the launch of the GFGP has reduced runoff and soil moisture due to enhanced evapotranspiration. Further revegetation associated with the GFGP policy is likely to increase evapotranspiration further, and thereby reduce runoff and soil moisture. The increase in evapotranspiration is associated with biophysical changes, including deeper roots that deplete deep soil moisture stores. However, despite the increase in evapotranspiration our results show no impact on rainfall. Our study cautions against further revegetation over the Loess Plateau given the reduction in water available for agriculture and human settlements, without any significant compensation from rainfall.&lt;/p&gt;


2015 ◽  
Vol 529 ◽  
pp. 685-695 ◽  
Author(s):  
Xuezhang Li ◽  
Ming’an Shao ◽  
Xiaoxu Jia ◽  
Xiaorong Wei ◽  
Liang He

Sign in / Sign up

Export Citation Format

Share Document