scholarly journals Nitrogen surface water retention in the Baltic Sea drainage basin

2014 ◽  
Vol 11 (9) ◽  
pp. 10829-10858 ◽  
Author(s):  
P. Stålnacke ◽  
A. Pengerud ◽  
A. Vassiljev ◽  
E. Smedberg ◽  
C.-M. Mörth ◽  
...  

Abstract. In this paper, we estimate the surface water retention of nitrogen (N) in all the 117 drainage basins to the Baltic Sea with the use of a statistical model (MESAW) for source apportionment of riverine loads of pollutants. Our results show that the MESAW model was able to estimate the N load at the river mouth of 88 Baltic Sea rivers, for which we had observed data, with a sufficient degree of precision and accuracy. The estimated retention parameters were also statistically significant. Our results show that around 380 000 t of N are annually retained in surface waters draining to the Baltic Sea. The total annual riverine load from the 117 basins to the Baltic Sea was estimated to 570 000 t of N, giving a total surface water N retention of around 40%. In terms of absolute retention values, three major river basins account for 50% of the total retention in the 117 basins; i.e. around 104 000 t of N is retained in Neva, 55 000 t in Vistula and 32 000 t in Oder. The largest retention was found in river basins with a high percentage of lakes as indicated by a strong relationship between N retention (%) and share of lake area in the river drainage areas. For example in Göta älv, we estimated a total N retention of 72%, whereof 67% of the retention occurred in the lakes of that drainage area (Lake Vänern primarily). The obtained results will hopefully enable the Helsinki Commission (HELCOM) to refine the nutrient load targets in the Baltic Sea Action Plan (BSAP), as well as to better identify cost-efficient measures to reduce nutrient loadings to the Baltic Sea.

2015 ◽  
Vol 19 (2) ◽  
pp. 981-996 ◽  
Author(s):  
P. Stålnacke ◽  
A. Pengerud ◽  
A. Vassiljev ◽  
E. Smedberg ◽  
C.-M. Mörth ◽  
...  

Abstract. In this paper, we estimate the surface water retention of nitrogen (N) in all the 117 drainage basins to the Baltic Sea with the use of a statistical model (MESAW) for source apportionment of riverine loads of pollutants. Our results show that the MESAW model was able to estimate the N load at the river mouth of 88 Baltic Sea rivers, for which we had observed data, with a sufficient degree of precision and accuracy. The estimated retention parameters were also statistically significant. Our results show that around 380 000 t of N are annually retained in surface waters draining to the Baltic Sea. The total annual riverine load from the 117 basins to the Baltic Sea was estimated at 570 000 t of N, giving a total surface water N retention of around 40%. In terms of absolute retention values, three major river basins account for 50% of the total retention in the 117 basins; i.e. around 104 000 t of N are retained in Neva, 55 000 t in Vistula and 32 000 t in Oder. The largest retention was found in river basins with a high percentage of lakes as indicated by a strong relationship between N retention (%) and share of lake area in the river drainage areas. For example in Göta älv, we estimated a total N retention of 72%, whereof 67% of the retention occurred in the lakes of that drainage area (Lake Vänern primarily). The obtained results will hopefully enable the Helsinki Commission (HELCOM) to refine the nutrient load targets in the Baltic Sea Action Plan (BSAP), as well as to better identify cost-efficient measures to reduce nutrient loadings to the Baltic Sea.


2011 ◽  
Vol 11 (7) ◽  
pp. 21533-21567 ◽  
Author(s):  
C. Geels ◽  
K. M. Hansen ◽  
J. H. Christensen ◽  
C. Ambelas Skjøth ◽  
T. Ellermann ◽  
...  

Abstract. The ecological status of the Baltic Sea has for many years been affected by the high input of both waterborne and airborne nutrients. The focus is here on the airborne input of nitrogen (N) and the projected changes in this input, assuming the new National Emission Ceilings directive (NEC-II), currently under negotiation in the EU, is fulfilled towards the year 2020. The Danish Eulerian Hemispheric Model (DEHM) has been used to estimate the development in N deposition based on present day meteorology combined with present day (2007) or future (2020) anthropogenic emissions. By using a so called tagging method in the DEHM model, the contribution from ship traffic and from each of the nine countries with coastlines to the Baltic Sea has been assessed. The annual deposition to the Baltic Sea is estimated to be 203 k tonnes N for the present day scenario (2007) and 165 k tonnes N in the 2020 scenario, giving a projected reduction of 38 k tonnes N in the annual load in 2020. This equals a decline in N deposition of 19 %. The results from 20 model runs using the tagging method show that of the total N deposition in 2007, 52 % came from emissions within the bordering countries. By 2020 this is projected to decrease to 48 %. For some countries the projected decrease in N deposition arising from the implementation of the NEC-II directive will be a considerable part of the reductions agreed on in the provisional reduction targets of the Baltic Sea Action Plan. This underlines the importance of including projections like the current in future updates of the Baltic Sea Action Plan.


2021 ◽  
Author(s):  
Christian Reeder ◽  
Carolin Löscher

<p>The Baltic Sea is characterised as a semi-enclosed brackish Sea that has experienced increased eutrophication, hypoxia, and increased temperature over the last ~100 years making Baltic Sea one of the most severely impacted oceanic environment by climate change. Biological fixation of dinitrogen gas (N<sub>2</sub>) is an essential process to make atmospheric N<sub>2</sub> available for marine life. This process is carried out by specialised organisms called diazotrophs and is catalysed by the energetic-consuming enzyme nitrogenase. Nitrogenases exist in three subtypes depending on their metal cofactors, (1) the most common molybdenum-dependent (Nif), (2) the vanadium-dependent (Vnf) and (3) the Iron-Iron-dependent nitrogenase (Anf). To date, the effect of climate change on those three enzyme subtypes and their potential role a future ocean is yet to be explored. The predicted ongoing oxygen loss in the ocean may limit Mo's availability and trigger a shift from the abundant Nif-type nitrogenase to Vnf or Anf and, therefore, a potential shift in the diazotrophic community. This study explored the climate change-related pressures on N<sub>2</sub> fixation and the diazotrophic community based on nifH and vnf/anfD amplicons. At the time of sampling, we found a post-bloom high-nutrient low-chlorophyll situation. Cyanobacterial groups, Nodularia and UCYN-A, dominated the diazotrophic community and showed a horizontal where UCYN-A were the dominant fixers at 20 m. Based on alternative nitrogenases amplicons, Rhodopseudomonas was the dominating microbe in the surface water. This paper presents the first hint of active nitrogenases in surface water and further establish UCYN-A as a significant player in Baltic Sea primary production.</p>


2009 ◽  
Vol 29 (7) ◽  
pp. 870-885 ◽  
Author(s):  
Anders Omstedt ◽  
Erik Gustafsson ◽  
Karin Wesslander

2019 ◽  
Vol 8 (29) ◽  
Author(s):  
Joanna Karczewska-Golec ◽  
Maja Kochanowska-Łyżen ◽  
Magdalena Bałut ◽  
Arkadiusz Piotrowski ◽  
Piotr Golec ◽  
...  

We present here the draft genome sequence of Paracoccus sp. strain 228, isolated from the Gulf of Gdańsk in the southern part of the Baltic Sea. The assembly contains 4,131,609 bp in 32 scaffolds.


2008 ◽  
Vol 2008 (1) ◽  
pp. 373-379
Author(s):  
Justiina Halonen ◽  
Melinda Pascale

ABSTRACT Shipping on the Baltic Sea, especially the transportation of oil, has grown significantly over the past few years. One of the most accident risky areas for Finland is situated in the Eastern Gulf of Finland (lat. 60° 11’ long. 027° 45’ E). The Baltic Sea has officially been classified by the International Maritime Organization as Particularly Sensitive Sea Area in 2005. In Finland the Regional Rescue Services (RRS) are responsible for organising on-shore clean-up with the assistance of the Regional Environmental Centres (REC). These oil combating authorities of Kymenlaakso region in south-eastern Finland have developed a thorough preparedness for oil incidents with the help of SOKO – Management of on-shore oil combating - project (SOKO). SOKO, innovated and administrated by the Kymenlaakso University of Applied Sciences (KyAMK), produced a detailed guidebook for oil combating authorities and the response commander (RC). The scope of the guidebook was achieved as an interdisciplinary effort between educational institutes, rescue services, environmental centres, authorities, civic organisations and businesses. The guidebook provides detailed information on how to conduct oil combating in the case of a major oil incident where the oil reaches the shores. The guidebook is used as an action plan, as a manual for the response commander (RC) as well as for training both authorities and volunteers. It is an extensive collection of studies undertaken by further education students and specialists under the supervision of the project steering committee, formed by local oil combating authorities and KyAMK SOKO project personnel. The guidebook discusses the oil combating organisation and the management, the human resources, the communication and the financing issues. The guidebook also covers the arranging cleaning operations, the oil combating equipment and the temporary storage sites in the mainland and the archipelago and the construction specifications for the temporary storages. Transportation of oily wastes was also examined including the methods for loading and discharging oily wastes, as well as the sea, road and railway transportation methods using a database for estimating the best and most economic routes from the archipelago to the mainland. In addition, detailed operative charts were produced, with indications of the cleaning sectors and the oil waste transportation spots. The SOKO contingency plan differs from the governmental plans by focusing only on the on-shore response excluding the at-sea response. The role of the oil combating authorities in the project was to identify unresolved issues in preparedness, provide practical information, supervise and accept the outcome. The main financier of SOKO in 2003–2007 was the Finnish Ministry of Education. The SOKO concept is currently expanding to cover more coastal area in the Gulf of Finland (SOKO II -project 2007–2011).


2020 ◽  
Vol 77 (6) ◽  
pp. 2089-2105
Author(s):  
Mayya Gogina ◽  
Michael L Zettler ◽  
Irene Wåhlström ◽  
Helén Andersson ◽  
Hagen Radtke ◽  
...  

Abstract Species in the brackish and estuarine ecosystems will experience multiple changes in hydrographic variables due to ongoing climate change and nutrient loads. Here, we investigate how a glacial relict species (Saduria entomon), having relatively cold, low salinity biogeographic origin, could be affected by the combined scenarios of climate change and eutrophication. It is an important prey for higher trophic-level species such as cod, and a predator of other benthic animals. We constructed habitat distribution models based occurrence and density of this species across the entire Baltic and estimated the relative importance of different driving variables. We then used two regional coupled ocean-biogeochemical models to investigate the combined impacts of two future climate change and nutrient loads scenarios on its spatial distribution in 2070–2100. According to the scenarios, the Baltic Sea will become warmer and fresher. Our results show that expected changes in salinity and temperature outrank those due to two nutrient-load scenarios (Baltic Sea Action Plan and business as usual) in their effect on S. entomon distribution. The results are relatively similar when using different models with the same scenarios, thereby increasing the confidence of projections. Overall, our models predict a net increase (and local declines) of suitable habitat area, total abundance and biomass for this species, which is probably facilitated by strong osmoregulation ability and tolerance to temperature changes. We emphasize the necessity of considering multiple hydrographic variables when estimating climate change impacts on species living in brackish and estuarine systems.


Sign in / Sign up

Export Citation Format

Share Document