scholarly journals New interpretation of the role of water balance in an extended Budyko hypothesis in arid regions

2015 ◽  
Vol 12 (10) ◽  
pp. 11013-11052 ◽  
Author(s):  
C. Du ◽  
F. Sun ◽  
J. Yu ◽  
X. Liu ◽  
Y. Chen

Abstract. The Budyko hypothesis (BH) is an effective approach to investigating long-term water balance at large basin scale under steady state. The assumption of steady state prevents applications of the BH to basins, which is unclosed, or with significant variations in soil water storage, i.e., under unsteady state, such as in extremely arid regions. In this study, we choose the Heihe River Basin (HRB) in China, an extremely arid inland basin, as the study area. We firstly use a calibrated and then validated monthly water balance model, i.e., the abcd model to quantitatively determine annual and monthly variations of water balance for the sub-basins and the whole catchment of the HRB and find that the role of soil water storage change and that of inflow from upper sub-basins in monthly water balance are significant. With the recognition of the inflow water from other regions and the soil water storage change as additional possible water sources to evapotranspiration in unclosed basins, we further define the equivalent precipitation (Pe) to include local precipitation, inflow water and soil water storage change as the water supply in the Budyko framework. With the newly defined water supply, the Budyko curve can successfully describe the relationship between the evapotranspiration ratio and the aridity index at both annual and monthly timescales, whilst it fails when only the local precipitation being considered. Adding to that, we develop a new Fu-type Budyko equation with two non-dimensional parameters (ω and λ) based on the deviation of Fu's equation. Over the annual time scale, the new Fu-type Budyko equation developed here has more or less identical performance to Fu's original equation for the sub-basins and the whole catchment. However, over the monthly time scale, due to large seasonality of soil water storage and inflow, the new Fu-type Budyko equation generally performs better than Fu's original equation. The new Fu-type Budyko equation (ω and λ) developed here enables one to apply the BH to interpret regional water balance over extremely dry environments under unsteady state (e.g., unclosed basins or sub-annual timescales).

2016 ◽  
Vol 20 (1) ◽  
pp. 393-409 ◽  
Author(s):  
C. Du ◽  
F. Sun ◽  
J. Yu ◽  
X. Liu ◽  
Y. Chen

Abstract. The Budyko hypothesis (BH) is an effective approach to investigating long-term water balance at large basin scale under steady state. The assumption of steady state prevents applications of the BH to basins, which is unclosed, or with significant variations in root zone water storage, i.e., under unsteady state, such as in extremely arid regions. In this study, we choose the Heihe River basin (HRB) in China, an extremely arid inland basin, as the study area. We firstly use a calibrated and then validated monthly water balance model, i.e., the abcd model, to quantitatively determine annual and monthly variations of water balance for the sub-basins and the whole catchment of the HRB, and find that the roles of root zone water storage change and that of inflow from upper sub-basins in monthly water balance are significant. With the recognition of the inflow water from other regions and the root zone water storage change as additional possible water sources to evapotranspiration in unclosed basins, we further define the equivalent precipitation (Pe) to include local precipitation, inflow water and root zone water storage change as the water supply in the Budyko framework. With the newly defined water supply, the Budyko curve can successfully describe the relationship between the evapotranspiration ratio and the aridity index at both annual and monthly timescales, whilst it fails when only the local precipitation being considered. Adding to that, we develop a new Fu-type Budyko equation with two non-dimensional parameters (ω and λ) based on the deviation of Fu's equation. Over the annual timescale, the new Fu-type Budyko equation developed here has more or less identical performance to Fu's original equation for the sub-basins and the whole catchment. However, over the monthly timescale, due to large seasonality of root zone water storage and inflow water, the new Fu-type Budyko equation generally performs better than Fu's original equation. The new Fu-type Budyko equation (ω and λ) developed here enables one to apply the BH to interpret regional water balance over extremely dry environments under unsteady state (e.g., unclosed basins or sub-annual timescales).


2016 ◽  
Vol 13 (1) ◽  
pp. 63-75 ◽  
Author(s):  
K. Imukova ◽  
J. Ingwersen ◽  
M. Hevart ◽  
T. Streck

Abstract. The energy balance of eddy covariance (EC) flux data is typically not closed. The nature of the gap is usually not known, which hampers using EC data to parameterize and test models. In the present study we cross-checked the evapotranspiration data obtained with the EC method (ETEC) against ET rates measured with the soil water balance method (ETWB) at winter wheat stands in southwest Germany. During the growing seasons 2012 and 2013, we continuously measured, in a half-hourly resolution, latent heat (LE) and sensible (H) heat fluxes using the EC technique. Measured fluxes were adjusted with either the Bowen-ratio (BR), H or LE post-closure method. ETWB was estimated based on rainfall, seepage and soil water storage measurements. The soil water storage term was determined at sixteen locations within the footprint of an EC station, by measuring the soil water content down to a soil depth of 1.5 m. In the second year, the volumetric soil water content was additionally continuously measured in 15 min resolution in 10 cm intervals down to 90 cm depth with sixteen capacitance soil moisture sensors. During the 2012 growing season, the H post-closed LE flux data (ETEC =  3.4 ± 0.6 mm day−1) corresponded closest with the result of the WB method (3.3 ± 0.3 mm day−1). ETEC adjusted by the BR (4.1 ± 0.6 mm day−1) or LE (4.9 ± 0.9 mm day−1) post-closure method were higher than the ETWB by 24 and 48 %, respectively. In 2013, ETWB was in best agreement with ETEC adjusted with the H post-closure method during the periods with low amount of rain and seepage. During these periods the BR and LE post-closure methods overestimated ET by about 46 and 70 %, respectively. During a period with high and frequent rainfalls, ETWB was in-between ETEC adjusted by H and BR post-closure methods. We conclude that, at most observation periods on our site, LE is not a major component of the energy balance gap. Our results indicate that the energy balance gap is made up by other energy fluxes and unconsidered or biased energy storage terms.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 143
Author(s):  
Marwan Kheimi ◽  
Shokry M. Abdelaziz

A new daily water balance model is developed and tested in this paper. The new model has a similar model structure to the existing probability distributed rainfall runoff models (PDM), such as HyMOD. However, the model utilizes a new distribution function for soil water storage capacity, which leads to the SCS (Soil Conservation Service) curve number (CN) method when the initial soil water storage is set to zero. Therefore, the developed model is a unification of the PDM and CN methods and is called the PDM–CN model in this paper. Besides runoff modeling, the calculation of daily evaporation in the model is also dependent on the distribution function, since the spatial variability of soil water storage affects the catchment-scale evaporation. The generated runoff is partitioned into direct runoff and groundwater recharge, which are then routed through quick and slow storage tanks, respectively. Total discharge is the summation of quick flow from the quick storage tank and base flow from the slow storage tank. The new model with 5 parameters is applied to 92 catchments for simulating daily streamflow and evaporation and compared with AWMB, SACRAMENTO, and SIMHYD models. The performance of the model is slightly better than HyMOD but is not better compared with the 14-parameter model (SACRAMENTO) in the calibration, and does not perform as well in the validation period as the 7-parameter model (SIMHYD) in some areas, based on the NSE values. The linkage between the PDM–CN model and long-term water balance model is also presented, and a two-parameter mean annual water balance equation is derived from the proposed PDM–CN model.


2021 ◽  
Vol 25 (2) ◽  
pp. 945-956
Author(s):  
Yuan Gao ◽  
Lili Yao ◽  
Ni-Bin Chang ◽  
Dingbao Wang

Abstract. Prediction of mean annual runoff is of great interest but still poses a challenge in ungauged basins. The present work diagnoses the prediction in mean annual runoff affected by the uncertainty in estimated distribution of soil water storage capacity. Based on a distribution function, a water balance model for estimating mean annual runoff is developed, in which the effects of climate variability and the distribution of soil water storage capacity are explicitly represented. As such, the two parameters in the model have explicit physical meanings, and relationships between the parameters and controlling factors on mean annual runoff are established. The estimated parameters from the existing data of watershed characteristics are applied to 35 watersheds. The results showed that the model could capture 88.2 % of the actual mean annual runoff on average across the study watersheds, indicating that the proposed new water balance model is promising for estimating mean annual runoff in ungauged watersheds. The underestimation of mean annual runoff is mainly caused by the underestimation of the area percentage of low soil water storage capacity due to neglecting the effect of land surface and bedrock topography. Higher spatial variability of soil water storage capacity estimated through the height above the nearest drainage (HAND) and topographic wetness index (TWI) indicated that topography plays a crucial role in determining the actual soil water storage capacity. The performance of mean annual runoff prediction in ungauged basins can be improved by employing better estimation of soil water storage capacity including the effects of soil, topography, and bedrock. It leads to better diagnosis of the data requirement for predicting mean annual runoff in ungauged basins based on a newly developed process-based model finally.


2008 ◽  
Vol 12 (5) ◽  
pp. 1189-1200 ◽  
Author(s):  
S. Manfreda ◽  
M. Fiorentino

Abstract. The present paper introduces an analytical approach for the description of the soil water balance dynamics over a schematic river basin. The model is based on a stochastic differential equation where the rainfall forcing is interpreted as an additive noise in the soil water balance. This equation can be solved assuming known the spatial distribution of the soil moisture over the basin transforming the two-dimensional problem in space in a one dimensional one. This assumption is particularly true in the case of humid and semihumid environments, where spatial redistribution becomes dominant producing a well defined soil moisture pattern. The model allowed to derive the probability density function of the saturated portion of a basin and of its relative saturation. This theory is based on the assumption that the soil water storage capacity varies across the basin following a parabolic distribution and the basin has homogeneous soil texture and vegetation cover. The methodology outlined the role played by the soil water storage capacity distribution of the basin on soil water balance. In particular, the resulting probability density functions of the relative basin saturation were found to be strongly controlled by the maximum water storage capacity of the basin, while the probability density functions of the relative saturated portion of the basin are strongly influenced by the spatial heterogeneity of the soil water storage capacity. Moreover, the saturated areas reach their maximum variability when the mean rainfall rate is almost equal to the soil water loss coefficient given by the sum of the maximum rate of evapotranspiration and leakage loss in the soil water balance. The model was tested using the results of a continuous numerical simulation performed with a semi-distributed model in order to validate the proposed theoretical distributions.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1312 ◽  
Author(s):  
Majed Abu-Zreig ◽  
Haruyuki Fujimaki ◽  
Mohamed Ahmed Abd Elbasit

Enhancing rainwater infiltration into heavy soils is an important strategy in arid regions to increase soil water storage and meet crop water demand. In such soils, water infiltration and deep percolation can be enhanced by constructing deep ditches filled with permeable materials, such as sand. Laboratory experiments were conducted to examine the effect of sand ditch installed across the slope of a soil box, 50 × 20 × 20 cm3, on runoff interception and water infiltration of clay soil packed at two bulk densities, 1240 and 1510 kg/m3. The experiments were carried out under laboratory conditions using simulated steady flow of about 20 cm/h for a duration of 60 min. Results showed that sand ditches highly reduced runoff and largely enhanced water infiltration into soils. In low-density soil, the average runoff was 15% of inflow volume but reduced to zero in the presence of sand ditches thus increasing soil water storage by 15%. In high-density soil, the presence of sand ditches was more effective; infiltration volume increased by 156% compared to control. The WASH_2D model was used to simulate water flow in the presence of sand ditches; it showed to increase water infiltration and soil-moisture storage thus improving crop production in drylands.


2015 ◽  
Vol 63 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Martin Wegehenkel ◽  
Horst H. Gerke

Abstract Weighing lysimeters can be used for studying the soil water balance and to analyse evapotranspiration (ET). However, not clear was the impact of the bottom boundary condition on lysimeter results and soil water movement. The objective was to analyse bottom boundary effects on the soil water balance. This analysis was carried out for lysimeters filled with fine- and coarse-textured soil monoliths by comparing simulated and measured data for lysimeters with a higher and a lower water table. The eight weighable lysimeters had a 1 m2 grass-covered surface and a depth of 1.5 m. The lysimeters contained four intact monoliths extracted from a sandy soil and four from a soil with a silty-clay texture. For two lysimeters of each soil, constant water tables were imposed at 135 cm and 210 cm depths. Evapotranspiration, change in soil water storage, and groundwater recharge were simulated for a 3-year period (1996 to 1998) using the Hydrus-1D software. Input data consisted of measured weather data and crop model-based simulated evaporation and transpiration. Snow cover and heat transport were simulated based on measured soil temperatures. Soil hydraulic parameter sets were estimated (i) from soil core data and (ii) based on texture data using ROSETTA pedotransfer approach. Simulated and measured outflow rates from the sandy soil matched for both parameter sets. For the sand lysimeters with the higher water table, only fast peak flow events observed on May 4, 1996 were not simulated adequately mainly because of differences between simulated and measured soil water storage caused by ET-induced soil water storage depletion. For the silty-clay soil, the simulations using the soil hydraulic parameters from retention data (i) were matching the lysimeter data except for the observed peak flows on May, 4, 1996, which here probably resulted from preferential flow. The higher water table at the lysimeter bottom resulted in higher drainage in comparison with the lysimeters with the lower water table. This increase was smaller for the finer-textured soil as compared to the coarser soil.


2012 ◽  
Vol 9 (11) ◽  
pp. 13117-13154 ◽  
Author(s):  
B. te Brake ◽  
M. J. van der Ploeg ◽  
G. H. de Rooij

Abstract. Water storage in the unsaturated zone is a major determinant of the hydrological behaviour of the soil, but methods to quantify soil water storage are limited. The objective of this study is to assess the applicability of clay soil surface elevation change measurements to estimate soil water storage changes. We measured moisture contents in soil aggregates by EC-5 sensors, and in volumes comprising multiple aggregates and intra-aggregates spaces by CS616 sensors. In a prolonged drying period, aggregate-scale storage change measurements revealed normal shrinkage for layers ≥ 30 cm depth, indicating volume loss equalled water loss. Shrinkage in a soil volume including multiple aggregates and voids was slightly less than normal, due to soil moisture variations in the profile and delayed drying of deeper soil layers upon lowering of the groundwater level. This resulted in shrinkage curve slopes of 0.89, 0.90 and 0.79 for the layers 0–60, 0–100 and 0–150 cm. Under a dynamic drying and wetting regime, shrinkage curve slopes ranged from 0.29 to 0.69 (EC-5) and 0.27 to 0.51 (CS616). Alternation of shrinkage and incomplete swelling resulted in an underestimation of volume change relatively to water storage change, due to hysteresis between swelling and shrinkage. Since the slope of the shrinkage relation depends on the drying regime, measurement scale and combined effect of different soil layers, shrinkage curves from laboratory tests on clay aggregates require suitable modifications for application to soil profiles. Then, the linear portion of the curve can help soil water storage estimation from soil surface elevation changes. These elevation changes might be measurable over larger extents by remote sensing.


Sign in / Sign up

Export Citation Format

Share Document