scholarly journals Less rain, more water in ponds: a remote sensing study of the dynamics of surface waters from 1950 to present in pastoral Sahel (Gourma region, Mali)

2009 ◽  
Vol 6 (4) ◽  
pp. 5047-5083 ◽  
Author(s):  
J. Gardelle ◽  
P. Hiernaux ◽  
L. Kergoat ◽  
M. Grippa

Abstract. Changes in the flood regime of ponds in the Gourma region from 1950 to present are studied by remote sensing, in the general context of the current multi-decennial Sahel drought. The seasonal and interannual variations of the areas covered by surface water are assessed using multi-date and multi-sensor satellite images (SPOT, FORMOSAT, LANDSAT-MSS, -TM, and -ETM, CORONA, and MODIS) and aerial photographs (IGN). Water body classification is adapted to each type of spectral resolution, with or without a middle-infrared band, and each spatial resolution, using linear unmixing for mixed pixels of MODIS data. The high-frequency MODIS data document the seasonal cycle, with an abrupt rise early in wet season and a progressive decrease in the dry season. They also provide a base to study the inter-annual variability of the flood regime, with sharp contrasts between dry years such as 2004 (low and early maximal area) and wetter years such as 2001 and 2002 (respectively high and late maximal area). The highest water level reached annually greatly depends on the volume, intensity and timing of rain events. However, the overall reduction by 20% of annual rains of the current period, compared to the 50' and 60', is concomitant with an apparently paradoxical large increase in the area of surface water, starting from the late 1980's. Spectacular for the two study cases of Agoufou and Ebang Mallam, for which time series covering the 1954-present period exist, this increase also reaches 98% between 1975 and 2002 for 92 ponds identified in central Gourma. Ponds with turbid waters and no aquatic vegetation are responsible for this increase, more pronounced to the north of the study zone. Possible causes of this change in surface water volume and regime are discussed based on differential changes in ponds dynamics related to the specifics in topography, soil texture and vegetation cover over the watershed. Changes in rain pattern and in ponds sedimentation are ruled out, and the impact of changes in land use, limited in the area, is found secondary, as opposed to what has often been advocated for in cultivated Sahel. Instead, major responsibility is attributed to increased runoff triggered by the lasting impact of the 1970–1980's droughts on the vegetation and on the hydric system over shallow soils.

2010 ◽  
Vol 14 (2) ◽  
pp. 309-324 ◽  
Author(s):  
J. Gardelle ◽  
P. Hiernaux ◽  
L. Kergoat ◽  
M. Grippa

Abstract. Changes in the flooded area of ponds in the Gourma region from 1950 to present are studied by remote sensing, in the general context of the current multi-decennial Sahel drought. The seasonal and interannual variations of the areas covered by surface water are assessed using multi-date and multi-sensor satellite images (SPOT, FORMOSAT, LANDSAT-MSS, –TM, and -ETM, CORONA, and MODIS) and aerial photographs (IGN). Water body classification is adapted to each type of spectral resolution, with or without a middle-infrared band, and each spatial resolution, using linear unmixing for mixed pixels of MODIS data. The high-frequency MODIS data document the seasonal cycle of flooded areas, with an abrupt rise early in wet season and a progressive decrease in the dry season. They also provide a base to study the inter-annual variability of the flooded areas, with sharp contrasts between dry years such as 2004 (low and early maximal area) and wetter years such as 2001 and 2002 (respectively high and late maximal area).The highest flooded area reached annually greatly depends on the volume, intensity and timing of rain events. However, the overall reduction by 20% of annual rains during the last 40 years is concomitant with an apparently paradoxical large increase in the area of surface water, starting from the 1970's and accelerating in the mid 1980's. Spectacular for the two study cases of Agoufou and Ebang Mallam, for which time series covering the 1954 to present period exist, this increase is also diagnosed at the regional scale from LANDSAT data spanning 1972–2007. It reaches 108% between September 1975 and 2002 for 91 ponds identified in central Gourma. Ponds with turbid waters and no aquatic vegetation are mostly responsible for this increase, more pronounced in the centre and north of the study zone. Possible causes of the differential changes in flooded areas are discussed in relation with the specifics in topography, soil texture and vegetation cover over the watersheds that feed each of the ponds. Changes in rain pattern and in ponds sedimentation are ruled out, and the impact of changes in land use, limited in the area, is found secondary, as opposed to what has often been advocated for in southern Sahel. Instead, major responsibility is attributed to increased runoff triggered by the lasting impact of the 1970–1980's droughts on the vegetation and on the runoff system over the shallow soils prevailing over a third of the landscape.


2018 ◽  
Vol 10 (12) ◽  
pp. 1892 ◽  
Author(s):  
T. Campbell ◽  
Trevor Lantz ◽  
Robert Fraser

Rapid increases in air temperature in Arctic and subarctic regions are driving significant changes to surface waters. These changes and their impacts are not well understood in sensitive high-Arctic ecosystems. This study explores changes in surface water in the high Arctic pond complexes of western Banks Island, Northwest Territories. Landsat imagery (1985–2015) was used to detect sub-pixel trends in surface water. Comparison of higher resolution aerial photographs (1958) and satellite imagery (2014) quantified changes in the size and distribution of waterbodies. Field sampling investigated factors contributing to the observed changes. The impact of expanding lesser snow goose populations and other biotic or abiotic factors on observed changes in surface water were also investigated using an information theoretic model selection approach. Our analyses show that the pond complexes of western Banks Island lost 7.9% of the surface water that existed in 1985. Drying disproportionately impacted smaller sized waterbodies, indicating that climate is the main driver. Model selection showed that intensive occupation by lesser snow geese was associated with more extensive drying and draining of waterbodies and suggests this intensive habitat use may reduce the resilience of pond complexes to climate warming. Changes in surface water are likely altering permafrost, vegetation, and the utility of these areas for animals and local land-users, and should be investigated further.


2020 ◽  
Vol 132 (11-12) ◽  
pp. 2651-2668
Author(s):  
Frances Boreham ◽  
Katharine Cashman ◽  
Alison Rust

Abstract Interactions between lava flows and surface water are not always considered in hazard assessments, despite abundant historical and geological evidence that they can create significant secondary hazards (e.g., floods and steam explosions). We combine contemporary accounts of the 1783–1784 Laki fissure eruption in southern Iceland with morphological analysis of the geological deposits to reconstruct the lava–water interactions and assess their impact on residents. We find that lava disrupted the local river systems, impounded water that flooded farms and impeded travel, and drove steam explosions that created at least 2979 rootless cones on the lava flow. Using aerial photographs and satellite-derived digital terrain models, we mapped and measured 12 of the 15 rootless cone groups on the Laki lava field. We have identified one new rootless cone group and provide data that suggest another cone group previously attributed to the 939–940 CE Eldgjá eruption was created by the Laki eruption. We then use contemporary accounts to estimate formation dates and environments for each cone group, which formed in wetland/lake areas, on riverbeds, and near areas of impounded water. Furthermore, comparison with previous field studies shows that assessments using remote sensing can be used to identify and map meter-scale and larger features on a lava flow, although remote mapping lacks the detail of field observations. Our findings highlight the different ways in which lava can interact with surface water, threatening people, property, water supplies, and infrastructure. For these reasons, anticipation of such interactions is important in lava flow hazard assessment in regions with abundant surface water; we further demonstrate that remote sensing can be an effective tool for identifying lava–water interactions in past lava flows.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 364
Author(s):  
Emmanouil Psomiadis ◽  
Lefteris Tomanis ◽  
Antonis Kavvadias ◽  
Konstantinos X. Soulis ◽  
Nikos Charizopoulos ◽  
...  

Dam breach has disastrous consequences for the economy and human lives. Floods are one of the most damaging natural phenomena, and some of the most catastrophic flash floods are related to dam collapses. The goal of the present study is to analyse the impact of a possible failure–collapse on a potentially affected area downstream of the existing Bramianos dam on southern Crete Island. HEC-RAS hydraulic analysis software was used to study the dam breach, the flood wave propagation, and estimate the extent of floods. The analysis was performed using two different relief datasets of the same area: a digital elevation model (DEM) taken from very high-resolution orthophoto images (OPH) of the National Cadastre and Mapping Agency SA and a detailed digital surface model (DSM) extracted from aerial images taken by an unmanned aerial vehicle (UAV). Remote sensing data of the Sentinel-2 satellite and OPH were utilised to create the geographic information system (GIS) layers of a thorough land use/cover classification (LULC) for the potentially flooded area, which was used to assess the impact of the flood wave. Different dam breach and flood scenarios, where the water flows over man-made structures, settlements, and olive tree cultivations, were also examined. The study area is dominated mainly by three geological formations with different hydrogeological characteristics that dictated the positioning and structure of the dam and determine the processes that shape the geomorphology and surface roughness of the floodplain, affecting flow conditions. The results show that the impact of a potential dam break at Bramianos dam is serious, and appropriate management measures should be taken to reduce the risk. The water flow downstream of the collapsed dam depends on the water volume stored in the reservoir. Moreover, the comparison of DSM and DEM cases shows that the detailed DSM may indicate more accurately the surface relief and existing natural obstacles such as vegetation, buildings, and greenhouses, enabling more realistic hydraulic simulation results. Dam breach flood simulations and innovative remote sensing data can provide valuable outcomes for engineers and stakeholders for decision-making and planning in order to confront the consequences of similar incidents worldwide.


2020 ◽  
Author(s):  
Simon Deggim ◽  
Annette Eicker ◽  
Lennart Schawohl ◽  
Helena Gerdener ◽  
Kerstin Schulze ◽  
...  

Abstract. Observations of changes in terrestrial water storage obtained from the satellite mission GRACE (Gravity Recovery and Climate Experiment) have frequently been used for water cycle studies and for the improvement of hydrological models by means of calibration and data assimilation. However, due to a low spatial resolution of the gravity field models spatially localized water storage changes, such as those occurring in lakes and reservoirs, cannot properly be represented in the GRACE estimates. As surface storage changes can represent a large part of total water storage, this leads to leakage effects and results in surface water signals becoming erroneously assimilated into other water storage compartments of neighboring model grid cells. As a consequence, a simple mass balance at grid/regional scale is not sufficient to deconvolve the impact of surface water on TWS. Furthermore, non-hydrology related phenomena contained in the GRACE time series, such as the mass redistribution caused by major earthquakes, hamper the use of GRACE for hydrological studies in affected regions. In this paper, we present the first release (RL01) of the global correction product RECOG (REgional COrrections for GRACE), which accounts for both the surface water (lakes & reservoirs, RECOG-LR) and earthquake effects (RECOG-EQ). RECOG-LR is computed from forward-modelling surface water volume estimates derived from satellite altimetry and (optical) remote sensing and allows both a removal of these signals from GRACE and a re-location of the mass change to its origin within the outline of the lakes/reservoirs. The earthquake correction RECOG-EQ includes both the co-seismic and post-seismic signals of two major earthquakes with magnitudes above 9 Mw. We can show that applying the correction dataset (1) reduces the GRACE signal variability by up to 75 % around major lakes and explains a large part of GRACE seasonal variations and trends, (2) avoids the introduction of spurious trends caused by leakage signals of nearby lakes when calibrating/assimilating hydrological models with GRACE, even in neighboring river basins, and (3) enables a clearer detection of hydrological droughts in areas affected by earthquakes. A first validation of the corrected GRACE time series using GPS-derived vertical station displacements shows a consistent improvement of the fit between GRACE and GNSS after applying the correction. Data are made available as open access via the Pangea database (RECOG-LR: Deggim et al. (2020a) https://doi.org/10.1594/PANGAEA.921851; RECOG-EQ: Gerdener et al. (2020b, under revision), https://doi.pangaea.de/10.1594/PANGAEA.921923).


Author(s):  
Xinrong Zhu ◽  
Hongyan Liu ◽  
Lu Wu ◽  
Boyi Liang ◽  
Feng Liu ◽  
...  

The Guizhou karst area is one of the largest continuous areas of karst in the humid climate zone and is representative of karst landforms in China. Large portions of the karst system are characterized by extremely shallow soils underlain by weathered bedrock and water deficits are common. Although the distribution of ecosystem productivity is largely related to variations in the temperature and precipitation, the influence of the substrate in karst areas requires further exploration. We explored the relative importance of the bedrock geochemistry (characterized by the concentrations of Ca, Mg and Si) and climatic factors (temperature and precipitation) to explain the spatial variability in gross primary productivity (GPP) with various degrees of water deficit during the time period 2001–2015. Our results show that the impact of bedrock geochemistry is an important parameter in changing the original relationship between climate and the GPP. The bedrock geochemistry functioned as a “regulator” of the relation between climate and the GPP, which strengthened with decreasing climate favourability. The variations in GPP and surface water storage were significantly different when different elements (Ca, Mg or Si) were dominant. The Mg-rich regions showed the greatest annual variations in the GPP, whereas the Si-rich regions had the strongest surface water storage potential to support vegetation growth. The results of our study are important for systematically evaluating the effects of climate on vegetation productivity and provide a benchmark for global vegetation modelling predictions.


Author(s):  
K. Hara ◽  
Y. Zhao ◽  
I. Harada ◽  
M. Tomita ◽  
J. Park ◽  
...  

The Great East Japan Earthquake (magnitude 9.0; occurred on 11<sup>th</sup> March 2011) and subsequent huge tsunami caused widespread damage along the Pacific Ocean coast of eastern Honshu, Japan. This research utilizes multi-resolution remote sensing images to clarify the impact on landscapes caused by this disaster, and also to monitor the subsequent survival and recovery process in the Sendai Bay region. The coastal landscape in the target area features a narrow strip of coastal sand barrier, historically stabilized by planted pine groves; backed by a low-lying plain that has traditionally been diked and converted to irrigated rice paddies. Farmsteads on the flat alluvial plain are surrounded by groves called “Igune”, consisting primarily of conifers. MODIS data (250 m resolution) were employed to map the overall extent of inundation and damage on the regional landscape scale. The major damage caused by the tsunami, destruction of coastal pine forests and inundation or rice paddies on the plain, was identified at this level. Progressively finer scale analysis were then implemented using SPOT/HRG-2 (10 m resolution) data; GeoEye-1 fine resolution data (0.5 m) and very fine resolution aerial photographs (10 cm) and LiDAR. These results demonstrated the minute details of the damage and recovery process. Some patches of pine forest, for example, were seen to have survived, and some coastal plant communities were already recovering only a year after the disaster. Continuous monitoring using field work and remote sensing is required for balanced regional strategies that provide for economic and social recovery and as well as restoration of vegetation, biodiversity and vital ecosystem services.


2021 ◽  
Vol 13 (5) ◽  
pp. 2227-2244
Author(s):  
Simon Deggim ◽  
Annette Eicker ◽  
Lennart Schawohl ◽  
Helena Gerdener ◽  
Kerstin Schulze ◽  
...  

Abstract. Observations of changes in terrestrial water storage (TWS) obtained from the satellite mission GRACE (Gravity Recovery and Climate Experiment) have frequently been used for water cycle studies and for the improvement of hydrological models by means of calibration and data assimilation. However, due to a low spatial resolution of the gravity field models, spatially localized water storage changes, such as those occurring in lakes and reservoirs, cannot properly be represented in the GRACE estimates. As surface storage changes can represent a large part of total water storage, this leads to leakage effects and results in surface water signals becoming erroneously assimilated into other water storage compartments of neighbouring model grid cells. As a consequence, a simple mass balance at grid/regional scale is not sufficient to deconvolve the impact of surface water on TWS. Furthermore, non-hydrology-related phenomena contained in the GRACE time series, such as the mass redistribution caused by major earthquakes, hamper the use of GRACE for hydrological studies in affected regions. In this paper, we present the first release (RL01) of the global correction product RECOG (REgional COrrections for GRACE), which accounts for both the surface water (lakes and reservoirs, RECOG-LR) and earthquake effects (RECOG-EQ). RECOG-LR is computed from forward-modelling surface water volume estimates derived from satellite altimetry and (optical) remote sensing and allows both a removal of these signals from GRACE and a relocation of the mass change to its origin within the outline of the lakes/reservoirs. The earthquake correction, RECOG-EQ, includes both the co-seismic and post-seismic signals of two major earthquakes with magnitudes above Mw9. We discuss that applying the correction dataset (1) reduces the GRACE signal variability by up to 75 % around major lakes and explains a large part of GRACE seasonal variations and trends, (2) avoids the introduction of spurious trends caused by leakage signals of nearby lakes when calibrating/assimilating hydrological models with GRACE, and (3) enables a clearer detection of hydrological droughts in areas affected by earthquakes. A first validation of the corrected GRACE time series using GPS-derived vertical station displacements shows a consistent improvement of the fit between GRACE and GNSS after applying the correction. Data are made available on an open-access basis via the Pangaea database (RECOG-LR: Deggim et al., 2020a, https://doi.org/10.1594/PANGAEA.921851; RECOG-EQ: Gerdener et al., 2020b, https://doi.org/10.1594/PANGAEA.921923).


2020 ◽  
Vol 02 (03) ◽  
pp. 1-1
Author(s):  
Heath Murray ◽  
◽  
Mehdi Khaki ◽  

Inland water bodies are crucial for supporting human life in various parts of the world. Therefore, it is essential to accurately monitor its spatiotemporal variations for better water management. The main objective of this study is to investigate the application of remote sensing data for quantifying the surface area changes and the impact of climatological variabilities over Lakes Mead and Chapala. Historical time series of monthly surface area dynamics were developed using Landsat 1-8 scenes and the climate variability was analysed using evaporation rate and precipitation. Results show that estimated surface water changes from satellite data agree well with independent data. A significant decline in surface area of about 40% since 2000 was found over the Lake Mead region. The relationship between surface area, precipitation and evaporation indicate that climatological factors have contributed to the lake surface area reduction. Lake Chapala’s surface area, on the other hand, has not fallen significantly despite negative trends in precipitation. It was found that human interactions with the lake are likely the main cause of surface area variations. The information about water surface area variation in this study is valuable for monitoring and characterising the predictability of water availability of the regions.


2021 ◽  
Vol 13 (06) ◽  
pp. 631-642
Author(s):  
Lahcen Mostakim ◽  
Fadoua El Qorchi ◽  
Fatima Zahra Guennoun ◽  
Soumia Moutaouakil ◽  
Elisabeth Berger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document