scholarly journals A simple two layer model for simulation of adsorbing and nonadsorbing solute transport through field soils

2009 ◽  
Vol 6 (5) ◽  
pp. 5631-5664
Author(s):  
M. S. Akhtar ◽  
U. Mohrlok ◽  
D. Stüben

Abstract. While rapid movement of solutes through structured soils constitutes the risk of groundwater contamination, simulation of solute transport in field soils is challenging. A modification in an existing preferential flow model was tested using replicated Chloride and Lithium leachings carried out at constant flow rates through four soils differing in grades and type of structure. Flow rates generated by +10 mm, −10 mm, −40 mm, and −100 mm water heads at the surface of 35 cm diameter 50 cm height field columns. Three well-structured silty clay soils under ponding had concurrent breakthrough of Chloride and Lithium within a few cm of drainage, and a delayed and reduced peak concentration of Lithium with decrease in flow rate controlled by the negative heads. Massive sandy loam soil columns had delayed but uniform breakthrough of the solutes over the flow rates. Macropore flow in well-structured silty clay/clay loam soils reduced retardation, R (1.5 to 4.5) and effective porosity, θe (0.05 to 0.15), and increased macropore velocity, vm (20 to 30 cm cm−1 drainage) compared to the massive sandy soils. The existing simple preferential flow equation (single layer) fitted the data well only when macropore flow was dominant. The modified preferential flow equations (two layers) fitted equally well both for the adsorbing and nonadsorbing solutes. The later had high goodness of fit for a large number of solute breakthroughs, and gave almost identical retardation coefficient R as that calculated by two-domain CDE. With fewer parameters, the modified preferential flow equation after testing on some rigorous model selection criteria may provide a base for future modeling of chemical transport.

2005 ◽  
Vol 69 (2) ◽  
pp. 291-300 ◽  
Author(s):  
Young-Jin Kim ◽  
Christophe J. G. Darnault ◽  
Nathan O. Bailey ◽  
J.-Yves Parlange ◽  
Tammo S. Steenhuis

2009 ◽  
Vol 6 (6) ◽  
pp. 7247-7285 ◽  
Author(s):  
N. P. Peranginangin ◽  
B. K. Richards ◽  
T. S. Steenhuis

Abstract. Accurate soil water sampling is needed for monitoring of pesticide leaching through the vadose zone, especially in soils with significant preferential flowpaths. We assessed the effectiveness of wick and gravity pan lysimeters as well as ceramic cups (installed 45–60 cm deep) in strongly-structured silty clay loam (Hudson series) and weakly-structured fine sandy loam (Arkport series) soils. Simulated rainfall (10–14 cm in 4 d, approximately equal to a 10-yr, 24 h storm) was applied following concurrent application of agronomic rates (0.2 g m−2) of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and 2,4-D (2,4-dichloro-phenoxy-acetic acid) immediately following application of a chloride tracer (22–44 g m−2). Preferential flow mechanisms were observed in both soils, with herbicide and tracer mobility greater than would be predicted by uniform flow. Preferential flow was more dominant in the Hudson soil, with earlier breakthroughs observed. Mean wick and gravity pan sampler percolate concentrations at 60 cm depth ranged from 96 to 223 μg L−1 for atrazine and 54 to 78 μg L−1 for 2,4-D at the Hudson site, and from 7 to 22 μg L−1 for atrazine and 0.5 to 2.8 μg L−1 for 2,4-D at the Arkport site. Gravity and wick pan lysimeters had comparably good collection efficiencies at elevated soil moisture levels, whereas wick pan samplers performed better at lower moisture contents. Cup samplers performed poorly with wide variations in collections and solute concentrations.


2013 ◽  
Author(s):  
T.S. Steenhuis ◽  
Y.-J. Kim ◽  
J.-Y. Parlange ◽  
M.S. Akhtar ◽  
B.K. Richards ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Ruihuan She ◽  
Yongxiang Yu ◽  
Chaorong Ge ◽  
Huaiying Yao

Soil salinization typically inhibits the ability of decomposer organisms to utilize soil organic matter, and an increase in soil clay content can mediate the negative effect of salinity on carbon (C) mineralization. However, the interactive effects of soil salt concentrations and properties on C mineralization remain uncertain. In this study, a laboratory experiment was performed to investigate the interactive effects of soil salt content (0.1%, 0.3%, 0.6% and 1.0%) and texture (sandy loam, sandy clay loam and silty clay soil with 6.0%, 23.9% and 40.6% clay content, respectively) on C mineralization and microbial community composition after cotton straw addition. With increasing soil salinity, carbon dioxide (CO2) emissions from the three soils decreased, but the effect of soil salinity on the decomposition of soil organic carbon varied with soil texture. Cumulative CO2 emissions in the coarse-textured (sandy loam and sandy clay loam) soils were more affected by salinity than those in the fine-textured (silty clay) soil. This difference was probably due to the differing responses of labile and resistant organic compounds to salinity across different soil texture. Increased salinity decreased the decomposition of the stable C pool in the coarse-textured soil, by reducing the proportion of fungi to bacteria, whereas it decreased the mineralization of the active C pool in the fine-textured soil through decreasing the Gram-positive bacterial population. Overall, our results suggest that soil texture controlled the negative effect of salinity on C mineralization through regulating the soil microbial community composition.


2006 ◽  
Vol 78 (5) ◽  
pp. 1081-1090 ◽  
Author(s):  
Werner Kördel ◽  
Michael Klein

Herein, we describe how pesticide leaching is assessed in Europe in order to fulfill EU Directive 91/414. The assessment schemes were developed to protect groundwater from unacceptable effects caused by pesticide use. They presently focus on chromatographic flow processes, which are dominant in sandy soils. Nevertheless, important regions in Europe are characterized by structured soils where transport through macropores is most relevant.Comparison of parallel field studies with isoproturon performed in sandy and silty soils showed that maximum concentration in the structured soil at a soil depth of 1 m may exceed respective concentrations in sandy soils by a factor of 60. Similar results were obtained by lysimeter studies using silty soil cores with maximum concentration of 40 μg/l at the soil bottom. These results demonstrate that preferential flow is more the rule than the exception in well-structured fine-textured soils, and pesticide losses via macropore flow may exceed losses via matrix transport considerably. All present information available for macropore flow suggest the need for greater regional assessments. Other recommendations include analysis of the influence of different soil management practices on the formation of macropores.


1988 ◽  
Vol 110 (1) ◽  
pp. 119-140 ◽  
Author(s):  
G. N. Thorne ◽  
P. J. Welbank ◽  
F. V. Widdowson ◽  
A. Penny ◽  
A. D. Todd ◽  
...  

SummaryWinter wheat grown following potatoes on a sandy loam at Woburn in 1978–9, 1980–1 and 1981–2 was compared with that on a clay loam at Rothamsted in 1978–9 and 1980–1, and on a silty clay (alluvium) at Woburn in 1981–2. The cultivar was Hustler in the harvest years 1979 and 1981 and Avalon in 1982. On each soil in each year multifactorial experiments tested effects of combinations of six factors, each at two levels.The best 4-plot mean grain yield ranged from 89 to 11·1 t/ha during the 3 years; it was smaller on the sandy soil than on the clay soil in 1979, but larger on sand than on the clay in 1981 and 1982. Until anthesis the number of shoots, dry weight and N content of the wheat giving these best yields were less on sand than on clay. Unlike grain weight, straw weight was always less on sand.Sowing in mid-September instead of mid-October increased grain yield on clay in each year (by 0·4·0·7 t/ha) and increased yield on sand only in 1981 (by 1·6 t/ha). Early sowing always increased dry weight, leaf area, number of shoots and N uptake until May. The benefits were always greater on clay than on sand immediately before N fertilizer was applied in the spring and usually lessened later on both soils.Aldicarb as an autumn pesticide increased grain yield of early-sown wheat on both soils in 1981 by lessening infection with barley yellow dwarf virus. Aldicarb increased yield on clay in 1982; it also decreased the number of plant parasitic nematodes.Wheat on sand was more responsive to nitrogen in division, timing and amount than was wheat on clay. In 1979 yield of wheat on sand was increased by dividing spring N between March, April and May, instead of giving it all in April, and in 1982 by giving winter N early in February. In 1981 division and timing on sand interacted with sowing date. Yield of early-sown wheat given N late, i.e. in March, April and May, exceeded that given N early, i.e. in February, March and May, by 1·4 t/ha; single dressings given all in March or all in April also yielded less than the late divided dressing. Yield of later-sown wheat given all the N in April was at least 1·2 t/ha less than with all N given in March or with divided N. In all years treatments that increased yield usually also increased N uptake. Grain yield on clay was never affected by division or timing of spring N or by application of winter N. This was despite the fact that all treatments that involved a delay in the application of N depressed growth and N uptake in spring on both sand and clay. The mean advantage in N uptake following early application of spring N eventually reversed on both soils, so that uptake at maturity was greater from late than from early application. Increasing the amount of N given in spring from the estimated requirement for 9 t/ha grain yield to that for 12 t/ha increased yield in 1982, especially on sand. The larger amount of N always increased the number of ears but often decreased the number of grains per ear and the size of individual grains.Irrigation increased grain yield only on the sandy soil, by 1·1 t/ha in 1979 and by 07 t/ha in 1981 and 1982. The component responsible was dry weight per grain in 1979 and 1982, when soil moisture deficits reaching maximum values of 136 and 110 mm respectively in the 2 years developed after anthesis; the component responsible was number of ears/m2 in 1982 when the maximum deficit of 76 mm occurred earlier, in late May.


1963 ◽  
Vol 9 (2) ◽  
pp. 237-249 ◽  
Author(s):  
R. N. Wensley ◽  
C. D. McKeen

The relation of soil populations of the muskmelon wilt fungus, Fusarium oxysporum f. melonis, to the wilt potentials of a yellow Fox sandy loam soil (Fsl) and a dark Colwood loam (Cl) was investigated. In either soil a direct relationship existed between the size of the population of the fungus and wilt incidence. Notwithstanding this relationship, with the same population the greater incidence of wilt in Fsl than in Cl showed that a factor or factors other than population affect the wilt potential. Whereas mean populations of field soils obtained at the site of wilted plants ranged upward to 3300 per gram, they declined steadily during the 9-month interval between crops. During this interval random samples of field soils yielded mean populations of 228 and 268 per gram of Fsl and Cl, respectively. Of the F. oxysporum colonies isolated at the end of harvest, about 70% from plant sites and approximately 21% from intersites were pathogenic. Two to eight months later only 12 to 15% of F. oxysporum isolates obtained by random sampling of infested field soils were pathogenic.


2009 ◽  
Vol 13 (6) ◽  
pp. 935-944 ◽  
Author(s):  
A. E. Anderson ◽  
M. Weiler ◽  
Y. Alila ◽  
R. O. Hudson

Abstract. Preferential flow paths have been found to be important for runoff generation, solute transport, and slope stability in many areas around the world. Although many studies have identified the particular characteristics of individual features and measured the runoff generation and solute transport within hillslopes, very few studies have determined how individual features are hydraulically connected at a hillslope scale. In this study, we used dye staining and excavation to determine the morphology and spatial pattern of a preferential flow network over a large scale (30 m). We explore the feasibility of extending small-scale dye staining techniques to the hillslope scale. We determine the lateral preferential flow paths that are active during the steady-state flow conditions and their interaction with the surrounding soil matrix. We also calculate the velocities of the flow through each cross-section of the hillslope and compare them to hillslope scale applied tracer measurements. Finally, we investigate the relationship between the contributing area and the characteristics of the preferential flow paths. The experiment revealed that larger contributing areas coincided with highly developed and hydraulically connected preferential flow paths that had flow with little interaction with the surrounding soil matrix. We found evidence of subsurface erosion and deposition of soil and organic material laterally and vertically within the soil. These results are important because they add to the understanding of the runoff generation, solute transport, and slope stability of preferential flow-dominated hillslopes.


Sign in / Sign up

Export Citation Format

Share Document