scholarly journals Soil Texture Alters the Impact of Salinity on Carbon Mineralization

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Ruihuan She ◽  
Yongxiang Yu ◽  
Chaorong Ge ◽  
Huaiying Yao

Soil salinization typically inhibits the ability of decomposer organisms to utilize soil organic matter, and an increase in soil clay content can mediate the negative effect of salinity on carbon (C) mineralization. However, the interactive effects of soil salt concentrations and properties on C mineralization remain uncertain. In this study, a laboratory experiment was performed to investigate the interactive effects of soil salt content (0.1%, 0.3%, 0.6% and 1.0%) and texture (sandy loam, sandy clay loam and silty clay soil with 6.0%, 23.9% and 40.6% clay content, respectively) on C mineralization and microbial community composition after cotton straw addition. With increasing soil salinity, carbon dioxide (CO2) emissions from the three soils decreased, but the effect of soil salinity on the decomposition of soil organic carbon varied with soil texture. Cumulative CO2 emissions in the coarse-textured (sandy loam and sandy clay loam) soils were more affected by salinity than those in the fine-textured (silty clay) soil. This difference was probably due to the differing responses of labile and resistant organic compounds to salinity across different soil texture. Increased salinity decreased the decomposition of the stable C pool in the coarse-textured soil, by reducing the proportion of fungi to bacteria, whereas it decreased the mineralization of the active C pool in the fine-textured soil through decreasing the Gram-positive bacterial population. Overall, our results suggest that soil texture controlled the negative effect of salinity on C mineralization through regulating the soil microbial community composition.

2009 ◽  
Vol 89 (2) ◽  
pp. 209-222 ◽  
Author(s):  
Roger Lalande ◽  
Bernard Gagnon ◽  
Isabelle Royer

Soil acidity is a major problem in agriculture because it limits plant growth and reduces crop productivity. The neutralizing potential of industrial by-products and their impact on soil properties were evaluated in two acidic soils characterized by contrasting textures, and submitted to intensive agriculture practices. Soil pH, microbial (dehydrogenase and alkaline phosphatase) activity, and Mehlich-3 extractable P, K, Ca and Mg were monitored in the year of soil incorporation of eight liming products and in the following 2 yr. In the sandy loam, liming products did not result in significant increases in soil pH in the 0- to 7.5-cm soil layer. Lime mud (LM) significantly increased soil pH by 0.4 units in the 7.5- to 20-cm layer compared with cement kiln dust (CKD). In the silty clay, calcium-phosphate-magnesium (CalPoMag) significantly raised pH by 0.65 units over both natural calcitic lime (NCa) and the magnesium dissolution product (MgD) in the first soil layer, and by 0.5 units over carbide lime (CL) treatment in the second soil layer. Activities of dehydrogenase and alkaline phosphatase were increased to various degrees by all liming materials, especially on the silty clay; LM and CalPoMag were the most beneficial materials. The exception was MgD, which did not result in any impact on microbial activity relative to the control. Both enzymatic activities were related to the increase in soil pH, particularly the alkaline phosphatase. Ion leaching was more pronounced in the sandy loam than in the silty clay soil, where large differences in the Ca and Mg ion levels were still detected in the 20- to 40-cm layer of the sandy loam. In this study, LM and CalPoMag are interesting liming products, particularly in the silty clay soil. Key words: Enzymatic activity, soil pH, lime, soil cations


1997 ◽  
Vol 77 (2) ◽  
pp. 281-283 ◽  
Author(s):  
J. M. Cooper ◽  
P. R. Warman

An Acadia silty clay and a Pugwash sandy loam were each fertilized with three rates of either composted chicken manure, fresh chicken manure, or synthetic fertilizer. The effects of these amendments on soil microbial activity (dehydrogenase enzyme activity, DHA), organic C and pH were monitored. The sandy loam soil, which was relatively high in organic C, did not experience increases in DHA due to organic amendments while compost produced higher DHA than manure or fertilizer treatments to the silty clay soil. There was no treatment effect on soil organic C in the sandy loam, while organic treatments increased organic C in the silty clay soil. Soil pH was affected by treatments to both soils with compost amendments producing the greatest increases in this parameter. The results emphasize the importance of considering initial soil organic C and soil texture when planning studies of the effect of organic amendments on soil microbial activity. Key words: Dehydrogenase, compost, chicken manure, pH, soil organic carbon


1994 ◽  
Vol 74 (3) ◽  
pp. 307-314 ◽  
Author(s):  
C. A. Grant ◽  
L. D. Bailey

Distribution of NO3, P, K, Cl, pH and conductance through the soil profile were measured on two soil types after 4 yr of crop production using zero tillage (ZT) or conventional tillage (CT), with or without addition of KCl. All plots received N and P fertilizer each year as banded applications. Surface concentrations of NO3-N were higher under ZT than CT, particularly on the fine sandy loam soil. Accumulation of NO3-N also occurred in the 60- to 120-cm zone, under both tillage systems in both soils. Carryover of NO3-N was substantially greater on the silty clay than the fine sandy loam soil. Phosphate accumulated at the depth of band application in both soils under both tillage systems. Potassium concentration was generally higher under ZT than CT in the surface 15 cm of both soils, presumably due to surface retention of K from fertilizer applications and crop residues. Chloride was higher under ZT than CT in the surface 5 cm of both soils, but was higher under CT than ZT in the 30- to 60-cm and 60- to 120-cm depths in the silty clay soil, if KCl had been applied. The pH on both soils under both tillage systems was reduced in the 10- to 12.5-cm soil depth, corresponding to the zone of fertilizer application. On the silty clay soil, pH was higher under ZT than CT in the 10- to 15-cm depth and tended to be higher under ZT than CT at all depths below 15 cm. Conductance was not influenced by tillage in either soil. Application of KCl increased K and Cl concentrations in the surface 15 cm on both soils. Concentration of Cl was increased to 120 cm in both soils, indicating the mobility and leaching potential of this anion. Conductance and pH were increased in the 2.5- to 5.0-cm and 10- to 12.5-cm depths by KCl application in the fine sandy loam soil, but on the silty clay soil, only conductance was increased. Key words: Zero tillage, nutrient stratification, pH stratification


2021 ◽  
Vol 13 (11) ◽  
pp. 6506
Author(s):  
Roberto Fanigliulo ◽  
Daniele Pochi ◽  
Pieranna Servadio

Conventional seedbed preparation is based on deep ploughing followed by lighter and finer secondary tillage of the superficial layer, normally performed by machines powered by the tractor’s Power Take-Off (PTO), which prepares the seedbed in a single pass. Conservation methods are based on a wide range of interventions, such as minimum or no-tillage, by means of machines with passive action working tools which require two or more passes The aim of this study was to assess both the power-energy requirements of conventional (power harrows and rotary tillers with different working width) and conservation implements (disks harrow and combined cultivator) and the soil tillage quality parameters, with reference to the capability of preparing an optimal seedbed for wheat planting. Field tests were carried out on flat, silty-clay soil, using instrumented tractors. The test results showed significant differences among the operative performances of the two typologies of machines powered by the tractor’s PTO: the fuel consumption, the power and the energy requirements of the rotary tillers are strongly higher than power harrows. However, the results also showed a decrease of these parameters proceeding from conventional to more conservation tillage implements. The better quality of seedbed was provided by the rotary tillers.


2016 ◽  
Vol 19 (74) ◽  
pp. 77-88 ◽  
Author(s):  
M. Noshadi ◽  
S. Jamshidi ◽  
F. Foroharfar ◽  
◽  
◽  
...  

2003 ◽  
Vol 83 (4) ◽  
pp. 395-403 ◽  
Author(s):  
Z. Zheng ◽  
L. E. Parent ◽  
J. A. MacLeod

The P dynamics in soils should be quantified in agricultural soils to improve fertilizer P (FP) efficiency while limiting the risk of P transfer from soils to water bodies. This study assessed P transformations following FP addition to Gleysolic soils. A pot experiment was conducted with five soils varying in texture from sandy loam to heavy clay, and receiving four FP rates under barley (Hordeum vulgare L.)-soybean (Glycine max L.) rotations. A modified Hedley procedure was used for soil P fractionation. Soil resin-P and NaHCO3-Pi contents were interactively affected by texture and FP. The NaHCO3-Po, NaOH-Po, HCl-P and H2SO4-P were only affected by soil texture. Proportions of 78 and 90% of the variation in labile and total P were, respectively, related to soil clay content. The FP addition increased resin-P, NaHCO3-Pi and NaOH-Pi and -Po contents in coarse-textured soils, but the amount added was not sufficient to mask the initial influence of soil texture on the sizes of soil P pools. Plant P uptake was proportional to FP rate but less closely linked to clay content. The average increase in labile P per unit of total FP added in excess of plant exports was 0.85, 0.8 2 , 0.73, 0.55 and 0.24 for the sandy loam, loam, clay loam, clay and heavy clay soil, respectively. The results of this study stress the important of considering soil texture in Gleysolic soils when assessing P accumulation and transformations in soils, due to commercial fertilizers applied in excess of crop removal. Key words: P fractions, clay content, fertilizer P, plant P uptake, soil texture


1992 ◽  
Vol 6 (3) ◽  
pp. 583-586 ◽  
Author(s):  
John S. Wilson ◽  
Chester L. Foy

The soil organic matter and/or humic matter fraction was highly correlated with the adsorption of ICIA-0051 herbicide onto five soils; clay content and other soil factors were less correlated. The Freundlich equation was used to describe the adsorption of ICIA-0051 by the various soils. Based on the K constants, the general order for adsorption for each soil was Hyde silty clay loam > Frederick silt loam > Davidson clay = Bojac sandy loam > Appling loamy sand. Across all soils, 25 to 50% of the amount adsorbed was removed by two desorptions. Appling, Bojac, and Davidson soils retained less herbicide after two desorptions than did Frederick and Hyde.


1995 ◽  
Vol 32 (1) ◽  
pp. 40-59 ◽  
Author(s):  
Abdel M.O. Mohamed ◽  
Raymond N. Yong ◽  
Miroslawa T. Mazus

In this study, the effect of temperature distribution and its influence on contaminant migration in a silty clay soil were examined. Three series of freezing-column tests were performed with three different fluids: distilled water, municipal waste leachate, and heavy metal – leachate solution. It was found that temperature distribution as a function of space and time was similar in all tests, most likely as a result of the limited amount of fluid intake. Moisture redistributions were varied as a function of experiment duration and the type of fluid used. The amount of fluid intake was directly related to the freezing time and the temperature gradient in the freezing column. The amount of unfrozen water content, ion concentration and temperature gradient were the controlling parameters that contributed to the contaminant transport in the frozen illitic silty clay soil. Na+-concentration profiles were mostly dependent on water movement in the soil column. The behaviour of Ca2+ and Mg2+ cations was similar to Na+; their concentrations in the soil solution decreased with freezing time due to ion exchange. The large accumulations of Pb2+, Zn2+, Cu2+, and Cd2+ in the lower 10 mm of the soil column occurred as a result of cation exchange and precipitation mechanisms. Key words : unsaturated, osmotic, diffusion, buffer, exchange, transport.


2020 ◽  
Vol 19 (1) ◽  
pp. 81-86
Author(s):  
Dhassi Khalid ◽  
Drissi Saad ◽  
Makroum Kacem ◽  
Nasreddine Fatima Ezzahra ◽  
Amlal Fouad ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document