scholarly journals Reference crop evapotranspiration derived from geo-stationary satellite imagery – a case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan

2010 ◽  
Vol 7 (4) ◽  
pp. 4925-4956 ◽  
Author(s):  
H. A. R. de Bruin ◽  
I. F. Trigo ◽  
M. A. Jitan ◽  
N. Temesgen Enku ◽  
C. van der Tol ◽  
...  

Abstract. First results are shown of a project aiming to estimate daily values of reference crop evapotranspiration ET0 from geo-stationary satellite imagery. In particular, for Woreta, a site in the Ethiopian highland at an elevation of about 1800 m, we tested a radiation-temperature based approximate formula proposed by Makkink (MAK) adopting ET0 evaluated with the version of the Penman-Monteith equation described in the FAO Irrigation and Drainage paper 56 as the most accurate estimate. More precisely we used the latter with measured daily solar radiation as input (denoted by PMFAO-Rs). Our data set for Woreta concerns a period where the surface was fully covered with short green non-stressed vegetation. Our project was carried out in the context of the Satellite Application Facility on Land Surface Analysis (LANDSAF) facility. Among others, the scope of LANDSAF is to increase benefit from the EUMETSAT Satellite Meteosat Second Generation (MSG). In this study we applied daily values of downward solar radiation at the surface obtained from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer. In addition, air temperature at 2 m was obtained from 3-hourly forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Both MAK and PMFAO-Rs contain the psychrometric "constant", which is proportional to air pressure, which, in turn, decreases with elevation. In order to test elevation effects we tested MAK and its LANDSAF input data for 2 sites in the Jordan Valley located about 250 m b.s.l. Except for a small underestimation of air temperature at the Ethiopian site at 1800 m, the first results of our LANDSAF-ET0 project are promising. If our approach to derive ET0 proves successfully, then the LANDSAF will be able to initiate nearly real time free distribution of ET0 for the full MSG disk.

2010 ◽  
Vol 14 (11) ◽  
pp. 2219-2228 ◽  
Author(s):  
H. A. R. de Bruin ◽  
I. F. Trigo ◽  
M. A. Jitan ◽  
N. Temesgen Enku ◽  
C. van der Tol ◽  
...  

Abstract. First results are shown of a project aiming to estimate daily values of reference crop evapotranspiration ET0 from geo-stationary satellite imagery. In particular, for Woreta, a site in the Ethiopian highland at an elevation of about 1800 m, we tested a radiation-temperature based approximate formula proposed by Makkink (MAK), adopting ET0 evaluated with the version of the Penman-Monteith equation described in the FAO Irrigation and Drainage paper 56 as the most accurate estimate. More precisely we used the latter with measured daily solar radiation as input (denoted by PMFAO-Rs). Our data set for Woreta concerns a period where the surface was fully covered with short green non-stressed vegetation. Our project was carried out in the context of the Satellite Application Facility on Land Surface Analysis (LANDSAF) facility. Among others, the scope of LANDSAF is to increase benefit from the EUMETSAT Satellite Meteosat Second Generation (MSG). In this study we applied daily values of downward solar radiation at the surface obtained from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer. In addition, air temperature at 2 m was obtained from 3-hourly forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Both MAK and PMFAO-Rs contain the psychrometric "constant", which is proportional to air pressure, which, in turn, decreases with elevation. In order to test elevation effects we tested MAK and its LANDSAF input data for 2 sites in the Jordan Valley located about 250 m b.s.l. Except for a small underestimation of air temperature at the Ethiopian site at 1800 m, the first results of our LANDSAF-ET0 project are promising. If our approach to derive ET0 proves successfully, then the LANDSAF will be able to initiate nearly real time free distribution of ET0 for the full MSG disk.


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Ziyang Zhao ◽  
Hongrui Wang ◽  
Cheng Wang ◽  
Wangcheng Li ◽  
Hao Chen ◽  
...  

The impact of global climate change on agroecosystems is growing, affecting reference crop evapotranspiration (ET0) and subsequent agricultural water management. In this study, the climate factors temporal trends, the spatiotemporal variation, and the climate driving factors of ET0 at different time scales were evaluated across the Northern Yellow River Irrigation Area (NYR), Central Arid Zone (CAZ), and Southern Mountain Area (SMA) of Ningxia based on 20 climatic stations’ daily data from 1957 to 2018. The results showed that the Tmean (daily mean air temperature), Tmax (daily maximum air temperature), and Tmin (daily minimum air temperature) all had increased significantly over the past 62 years, whilst RH (relative humidity), U2 (wind speed at 2 m height), and SD (sunshine duration) had significantly decreasing trends across all climatic zones. At monthly scale, the ET0 was mainly concentrated from April to September. And at annual and seasonal scales, the overall increasing trends were more pronounced in NX, NYR, and SMA, while CAZ was the opposite. For the spatial distribution, ET0 presented a trend of rising first and then falling at all time scales. The abrupt change point for climatic factors and ET0 series was obtained at approximately 1990 across all climatic zones, and the ET0 had a long period of 25a and a short period of 10a at annual scale, while it was 15a and 5a at seasonal scale. RH and Tmax were the most sensitive climatic factors at the annual and seasonal scales, while the largest contribution rates were Tmax and SD. This study not only is important for the understanding of ET0 changes but also provides the preliminary and elementary reference for agriculture water management in Ningxia.


2018 ◽  
Vol 50 (1) ◽  
pp. 187-199 ◽  
Author(s):  
Pengcheng Tang ◽  
Bing Xu ◽  
Zhanyi Gao ◽  
Heping Li ◽  
Xiaoyu Gao ◽  
...  

Abstract Estimation of ET0 in high-elevation (above sea level, ASL) areas of Tibet presents unique challenges: scarcity of monitoring stations, short-time coverage of meteorological data, low-oxygen and low-pressure environment, and strong solar radiation. In this study, altitude factors and modified temperature constants are utilized to improve the Hargreaves (HS) model based on 30-year daily meteorological data from 20 typical sites in Tibet. The improved model, Hargreaves-Elevation (HS-E) improved model, could provide better results at different time scales. Negative ET0 values were unavoidable in the HS model when applied to high-elevation areas. However, the HS-E model solved this problem and improved the accuracy of estimated ET0. In particular, the HS-E model performs better when the time scale becomes larger. Therefore, the HS-E model is highly recommended to estimate ET0 in high-elevation areas where the meteorological data are scarce, for example, in Tibet above 2,000 m.


Author(s):  
S. Niranjan ◽  
Lakshman Nandagiri

Abstract Obtaining accurate estimates of reference crop evapotranspiration (ET0) using limited climatic inputs is essential in data-short situations where the preferred FAO-56 Penman–Monteith (PM) equation cannot be implemented. Among several available for ET0 estimation, the empirical temperature-based Hargreaves–Samani (HG) equation remains a popular alternative. However, accurate HG estimates can be obtained by local calibration and replacing the mean daily temperature with the effective daily temperature. Therefore, the present study was taken up to evaluate the effects of site-specific calibration of model parameters and the use of effective air temperature on the accuracy of ET0 estimates by the HG model. For this purpose, climate records for the historical period 2006–2016 of 67 stations located across 10 agro-climatic zones of Karnataka State, India, were used and the analysis was carried out using a monthly time step. Calibration and statistical performance evaluation was performed using FAO-56 PM ET0 estimates as a reference. Overall results showed significant improvement in HG estimates across all zones with the use of locally calibrated parameters, whereas the use of effective air temperature did not lead to any significant gain in prediction accuracies. The derived information on the spatial distribution of calibrated parameters will help obtain accurate ET0 estimates with only air temperature inputs.


2019 ◽  
Vol 42 (1) ◽  
pp. 124-135
Author(s):  
Emeka Ndulue ◽  
Ikenna Onyekwelu ◽  
Kingsley Nnaemeka Ogbu ◽  
Vintus Ogwo

Abstract Solar radiation (Rs) is an essential input for estimating reference crop evapotranspiration, ETo. An accurate estimate of ETo is the first step involved in determining water demand of field crops. The objective of this study was to assess the accuracy of fifteen empirical solar radiations (Rs) models and determine its effects on ETo estimates for three sites in humid tropical environment (Abakaliki, Nsukka, and Awka). Meteorological data from the archives of NASA (from 1983 to 2005) was used to derive empirical constants (calibration) for the different models at each location while data from 2006 to 2015 was used for validation. The results showed an overall improvement when comparing measured Rs with Rs determined using original constants and Rs using the new constants. After calibration, the Swartman–Ogunlade (R2 = 0.97) and Chen 2 models (RMSE = 0.665 MJ∙m−2∙day−1) performed best while Chen 1 (R2 = 0.66) and Bristow–Campbell models (RMSE = 1.58 MJ∙m−2∙day−1) performed least in estimating Rs in Abakaliki. At the Nsukka station, Swartman–Ogunlade (R2 = 0.96) and Adeala models (RMSE = 0.785 MJ∙m−2∙day−1) performed best while Hargreaves–Samani (R2 = 0.64) and Chen 1 models (RMSE = 1.96 MJ∙m−2∙day−1) performed least in estimating Rs. Chen 2 (R2 = 0.98) and Swartman–Ogunlade models (RMSE = 0.43 MJ∙m−2∙day−1) performed best while Hargreaves–Samani (R2 = 0.68) and Chen 1 models (RMSE = 1.64 MJ∙m−2∙day−1) performed least in estimating Rs in Awka. For estimating ETo, Adeala (R2 =0.98) and Swartman–Ogunlade models (RMSE = 0.064 MJ∙m−2∙day−1) performed best at the Awka station and Swartman–Ogunlade (R2 = 0.98) and Chen 2 models (RMSE = 0.43 MJ∙m−2∙day−1) performed best at Abakaliki while Angstrom–Prescott–Page (R2 = 0.96) and El-Sebaii models (RMSE = 0.0908 mm∙day−1) performed best at the Nsukka station.


Sign in / Sign up

Export Citation Format

Share Document