scholarly journals COMPARISON OF UAS-BASED PHOTOGRAMMETRY SOFTWARE FOR 3D POINT CLOUD GENERATION: A SURVEY OVER A HISTORICAL SITE

Author(s):  
F. Alidoost ◽  
H. Arefi

Nowadays, Unmanned Aerial System (UAS)-based photogrammetry offers an affordable, fast and effective approach to real-time acquisition of high resolution geospatial information and automatic 3D modelling of objects for numerous applications such as topography mapping, 3D city modelling, orthophoto generation, and cultural heritages preservation. In this paper, the capability of four different state-of-the-art software packages as 3DSurvey, Agisoft Photoscan, Pix4Dmapper Pro and SURE is examined to generate high density point cloud as well as a Digital Surface Model (DSM) over a historical site. The main steps of this study are including: image acquisition, point cloud generation, and accuracy assessment. The overlapping images are first captured using a quadcopter and next are processed by different software to generate point clouds and DSMs. In order to evaluate the accuracy and quality of point clouds and DSMs, both visual and geometric assessments are carry out and the comparison results are reported.

2015 ◽  
Vol 764-765 ◽  
pp. 1375-1379 ◽  
Author(s):  
Cheng Tiao Hsieh

This paper aims at presenting a simple approach utilizing a Kinect-based scanner to create models available for 3D printing or other digital manufacturing machines. The outputs of Kinect-based scanners are a depth map and they usually need complicated computational processes to prepare them ready for a digital fabrication. The necessary processes include noise filtering, point cloud alignment and surface reconstruction. Each process may require several functions and algorithms to accomplish these specific tasks. For instance, the Iterative Closest Point (ICP) is frequently used in a 3D registration and the bilateral filter is often used in a noise point filtering process. This paper attempts to develop a simple Kinect-based scanner and its specific modeling approach without involving the above complicated processes.The developed scanner consists of an ASUS’s Xtion Pro and rotation table. A set of organized point cloud can be generated by the scanner. Those organized point clouds can be aligned precisely by a simple transformation matrix instead of the ICP. The surface quality of raw point clouds captured by Kinect are usually rough. For this drawback, this paper introduces a solution to obtain a smooth surface model. Inaddition, those processes have been efficiently developed by free open libraries, VTK, Point Cloud Library and OpenNI.


Author(s):  
H.-J. Przybilla ◽  
M. Lindstaedt ◽  
T. Kersten

<p><strong>Abstract.</strong> The quality of image-based point clouds generated from images of UAV aerial flights is subject to various influencing factors. In addition to the performance of the sensor used (a digital camera), the image data format (e.g. TIF or JPG) is another important quality parameter. At the UAV test field at the former Zollern colliery (Dortmund, Germany), set up by Bochum University of Applied Sciences, a medium-format camera from Phase One (IXU 1000) was used to capture UAV image data in RAW format. This investigation aims at evaluating the influence of the image data format on point clouds generated by a Dense Image Matching process. Furthermore, the effects of different data filters, which are part of the evaluation programs, were considered. The processing was carried out with two software packages from Agisoft and Pix4D on the basis of both generated TIF or JPG data sets. The point clouds generated are the basis for the investigation presented in this contribution. Point cloud comparisons with reference data from terrestrial laser scanning were performed on selected test areas representing object-typical surfaces (with varying surface structures). In addition to these area-based comparisons, selected linear objects (profiles) were evaluated between the different data sets. Furthermore, height point deviations from the dense point clouds were determined using check points. Differences in the results generated through the two software packages used could be detected. The reasons for these differences are filtering settings used for the generation of dense point clouds. It can also be assumed that there are differences in the algorithms for point cloud generation which are implemented in the two software packages. The slightly compressed JPG image data used for the point cloud generation did not show any significant changes in the quality of the examined point clouds compared to the uncompressed TIF data sets.</p>


Author(s):  
Robert Niederheiser ◽  
Martin Mokroš ◽  
Julia Lange ◽  
Helene Petschko ◽  
Günther Prasicek ◽  
...  

Terrestrial photogrammetry nowadays offers a reasonably cheap, intuitive and effective approach to 3D-modelling. However, the important choice, which sensor and which software to use is not straight forward and needs consideration as the choice will have effects on the resulting 3D point cloud and its derivatives. <br><br> We compare five different sensors as well as four different state-of-the-art software packages for a single application, the modelling of a vegetated rock face. The five sensors represent different resolutions, sensor sizes and price segments of the cameras. The software packages used are: (1) Agisoft PhotoScan Pro (1.16), (2) Pix4D (2.0.89), (3) a combination of Visual SFM (V0.5.22) and SURE (1.2.0.286), and (4) MicMac (1.0). We took photos of a vegetated rock face from identical positions with all sensors. Then we compared the results of the different software packages regarding the ease of the workflow, visual appeal, similarity and quality of the point cloud. <br><br> While PhotoScan and Pix4D offer the user-friendliest workflows, they are also “black-box” programmes giving only little insight into their processing. Unsatisfying results may only be changed by modifying settings within a module. The combined workflow of Visual SFM, SURE and CloudCompare is just as simple but requires more user interaction. MicMac turned out to be the most challenging software as it is less user-friendly. However, MicMac offers the most possibilities to influence the processing workflow. The resulting point-clouds of PhotoScan and MicMac are the most appealing.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 700 ◽  
Author(s):  
Anna Fryskowska

Three-dimensional (3D) mapping of power lines is very important for power line inspection. Many remotely-sensed data products like light detection and ranging (LiDAR) have been already studied for power line surveys. More and more data are being obtained via photogrammetric measurements. This increases the need for the implementation of advanced processing techniques. In recent years, there have been several developments in visualisation techniques using UAV (unmanned aerial vehicle) platform photography. The most modern of such imaging systems have the ability to generate dense point clouds. However, image-based point cloud accuracy is very often various (unstable) and dependent on the radiometric quality of images and the efficiency of image processing algorithms. The main factor influencing the point cloud quality is noise. Such problems usually arise with data obtained via low-cost UAV platforms. Therefore, generated point clouds representing power lines are usually incomplete and noisy. To obtain a complete and accurate 3D model of power lines and towers, it is necessary to develop improved data processing algorithms. The experiment tested the algorithms on power lines with different voltages. This paper presents the wavelet-based method of processing data acquired with a low-cost UAV camera. The proposed, original method involves the application of algorithms for coarse filtration and precise filtering. In addition, a new way of calculating the recommended flight height was proposed. At the end, the accuracy assessment of this two-stage filtration process was examined. For this, point quality indices were proposed. The experimental results show that the proposed algorithm improves the quality of low-cost point clouds. The proposed methods improve the accuracy of determining the parameters of the lines by more than twice. About 10% of noise is reduced by using the wavelet-based approach.


Author(s):  
S. Ostrowski ◽  
G. Jóźków ◽  
C. Toth ◽  
B. Vander Jagt

Unmanned Aerial Systems (UAS) allow for the collection of low altitude aerial images, along with other geospatial information from a variety of companion sensors. The images can then be processed using sophisticated algorithms from the Computer Vision (CV) field, guided by the traditional and established procedures from photogrammetry. Based on highly overlapped images, new software packages which were specifically developed for UAS technology can easily create ground models, such as Point Clouds (PC), Digital Surface Model (DSM), orthoimages, etc. The goal of this study is to compare the performance of three different software packages, focusing on the accuracy of the 3D products they produce. Using a Nikon D800 camera installed on an ocotocopter UAS platform, images were collected during subsequent field tests conducted over the Olentangy River, north from the Ohio State University campus. Two areas around bike bridges on the Olentangy River Trail were selected because of the challenge the packages would have in creating accurate products; matching pixels over the river and dense canopy on the shore presents difficult scenarios to model. Ground Control Points (GCP) were gathered at each site to tie the models to a local coordinate system and help assess the absolute accuracy for each package. In addition, the models were also relatively compared to each other using their PCs.


Author(s):  
Robert Niederheiser ◽  
Martin Mokroš ◽  
Julia Lange ◽  
Helene Petschko ◽  
Günther Prasicek ◽  
...  

Terrestrial photogrammetry nowadays offers a reasonably cheap, intuitive and effective approach to 3D-modelling. However, the important choice, which sensor and which software to use is not straight forward and needs consideration as the choice will have effects on the resulting 3D point cloud and its derivatives. &lt;br&gt;&lt;br&gt; We compare five different sensors as well as four different state-of-the-art software packages for a single application, the modelling of a vegetated rock face. The five sensors represent different resolutions, sensor sizes and price segments of the cameras. The software packages used are: (1) Agisoft PhotoScan Pro (1.16), (2) Pix4D (2.0.89), (3) a combination of Visual SFM (V0.5.22) and SURE (1.2.0.286), and (4) MicMac (1.0). We took photos of a vegetated rock face from identical positions with all sensors. Then we compared the results of the different software packages regarding the ease of the workflow, visual appeal, similarity and quality of the point cloud. &lt;br&gt;&lt;br&gt; While PhotoScan and Pix4D offer the user-friendliest workflows, they are also “black-box” programmes giving only little insight into their processing. Unsatisfying results may only be changed by modifying settings within a module. The combined workflow of Visual SFM, SURE and CloudCompare is just as simple but requires more user interaction. MicMac turned out to be the most challenging software as it is less user-friendly. However, MicMac offers the most possibilities to influence the processing workflow. The resulting point-clouds of PhotoScan and MicMac are the most appealing.


Author(s):  
G. Jozkow ◽  
P. Wieczorek ◽  
M. Karpina ◽  
A. Walicka ◽  
A. Borkowski

The Velodyne HDL-32E laser scanner is used more frequently as main mapping sensor in small commercial UASs. However, there is still little information about the actual accuracy of point clouds collected with such UASs. This work evaluates empirically the accuracy of the point cloud collected with such UAS. Accuracy assessment was conducted in four aspects: impact of sensors on theoretical point cloud accuracy, trajectory reconstruction quality, and internal and absolute point cloud accuracies. Theoretical point cloud accuracy was evaluated by calculating 3D position error knowing errors of used sensors. The quality of trajectory reconstruction was assessed by comparing position and attitude differences from forward and reverse EKF solution. Internal and absolute accuracies were evaluated by fitting planes to 8 point cloud samples extracted for planar surfaces. In addition, the absolute accuracy was also determined by calculating point 3D distances between LiDAR UAS and reference TLS point clouds. Test data consisted of point clouds collected in two separate flights performed over the same area. Executed experiments showed that in tested UAS, the trajectory reconstruction, especially attitude, has significant impact on point cloud accuracy. Estimated absolute accuracy of point clouds collected during both test flights was better than 10&amp;thinsp;cm, thus investigated UAS fits mapping-grade category.


2015 ◽  
Vol 9 (4) ◽  
Author(s):  
Charles Toth ◽  
Grzegorz Jozkow ◽  
Dorota Grejner-Brzezinska

AbstractInterest in using inexpensive Unmanned Aerial System (UAS) technology for topographic mapping has recently significantly increased. Small UAS platforms equipped with consumer grade cameras can easily acquire high-resolution aerial imagery allowing for dense point cloud generation, followed by surface model creation and orthophoto production. In contrast to conventional airborne mapping systems, UAS has limited ground coverage due to low flying height and limited flying time, yet it offers an attractive alternative to high performance airborne systems, as the cost of the sensors and platform, and the flight logistics, is relatively low. In addition, UAS is better suited for small area data acquisitions and to acquire data in difficult to access areas, such as urban canyons or densely built-up environments. The main question with respect to the use of UAS is whether the inexpensive consumer sensors installed in UAS platforms can provide the geospatial data quality comparable to that provided by conventional systems.This study aims at the performance evaluation of the current practice of UAS-based topographic mapping by reviewing the practical aspects of sensor configuration, georeferencing and point cloud generation, including comparisons between sensor types and processing tools. The main objective is to provide accuracy characterization and practical information for selecting and using UAS solutions in general mapping applications. The analysis is based on statistical evaluation as well as visual examination of experimental data acquired by a Bergen octocopter with three different image sensor configurations, including a GoPro HERO3+ Black Edition, a Nikon D800 DSLR and a Velodyne HDL-32. In addition, georeferencing data of varying quality were acquired and evaluated. The optical imagery was processed by using three commercial point cloud generation tools. Comparing point clouds created by active and passive sensors by using different quality sensors, and finally, by different commercial software tools, provides essential information for the performance validation of UAS technology.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1563
Author(s):  
Ruibing Wu ◽  
Ziping Yu ◽  
Donghong Ding ◽  
Qinghua Lu ◽  
Zengxi Pan ◽  
...  

As promising technology with low requirements and high depositing efficiency, Wire Arc Additive Manufacturing (WAAM) can significantly reduce the repair cost and improve the formation quality of molds. To further improve the accuracy of WAAM in repairing molds, the point cloud model that expresses the spatial distribution and surface characteristics of the mold is proposed. Since the mold has a large size, it is necessary to be scanned multiple times, resulting in multiple point cloud models. The point cloud registration, such as the Iterative Closest Point (ICP) algorithm, then plays the role of merging multiple point cloud models to reconstruct a complete data model. However, using the ICP algorithm to merge large point clouds with a low-overlap area is inefficient, time-consuming, and unsatisfactory. Therefore, this paper provides the improved Offset Iterative Closest Point (OICP) algorithm, which is an online fast registration algorithm suitable for intelligent WAAM mold repair technology. The practicality and reliability of the algorithm are illustrated by the comparison results with the standard ICP algorithm and the three-coordinate measuring instrument in the Experimental Setup Section. The results are that the OICP algorithm is feasible for registrations with low overlap rates. For an overlap rate lower than 60% in our experiments, the traditional ICP algorithm failed, while the Root Mean Square (RMS) error reached 0.1 mm, and the rotation error was within 0.5 degrees, indicating the improvement of the proposed OICP algorithm.


2020 ◽  
Vol 6 (9) ◽  
pp. 94
Author(s):  
Magda Alexandra Trujillo-Jiménez ◽  
Pablo Navarro ◽  
Bruno Pazos ◽  
Leonardo Morales ◽  
Virginia Ramallo ◽  
...  

Current point cloud extraction methods based on photogrammetry generate large amounts of spurious detections that hamper useful 3D mesh reconstructions or, even worse, the possibility of adequate measurements. Moreover, noise removal methods for point clouds are complex, slow and incapable to cope with semantic noise. In this work, we present body2vec, a model-based body segmentation tool that uses a specifically trained Neural Network architecture. Body2vec is capable to perform human body point cloud reconstruction from videos taken on hand-held devices (smartphones or tablets), achieving high quality anthropometric measurements. The main contribution of the proposed workflow is to perform a background removal step, thus avoiding the spurious points generation that is usual in photogrammetric reconstruction. A group of 60 persons were taped with a smartphone, and the corresponding point clouds were obtained automatically with standard photogrammetric methods. We used as a 3D silver standard the clean meshes obtained at the same time with LiDAR sensors post-processed and noise-filtered by expert anthropological biologists. Finally, we used as gold standard anthropometric measurements of the waist and hip of the same people, taken by expert anthropometrists. Applying our method to the raw videos significantly enhanced the quality of the results of the point cloud as compared with the LiDAR-based mesh, and of the anthropometric measurements as compared with the actual hip and waist perimeter measured by the anthropometrists. In both contexts, the resulting quality of body2vec is equivalent to the LiDAR reconstruction.


Sign in / Sign up

Export Citation Format

Share Document