scholarly journals DEVELOPING IFC FOR INFRASTRUCTURE: A CASE STUDY OF THREE HIGHWAY ENTITIES

Author(s):  
G. S. Floros ◽  
G. Boyes ◽  
D. Owens ◽  
C. Ellul

<p><strong>Abstract.</strong> Modern cities pay particular attention to upscale their infrastructure systems in order to improve the every-day life of their citizens and lead the way towards a more sustainable environment. As part of this, they invest extensive funds in large infrastructure projects which are challenging to deliver as they require an e efficient communication among different professions, in order to share information efficiently throughout the lifecycle of the project, thus highlighting the importance of standardization to maintain consistency and integrity during data exchange. Building Information Modelling (BIM) aims to facilitate the above-mentioned requirements by describing the life-cycle of the project and Industry Foundation Classes (IFC) is the Standard for BIM that enables an efficient storage, management, exchange and visualization of information. However, there are two important challenges that need to be addressed: (i) IFC focuses particularly on buildings and provides limited support for infrastructure elements and (ii) the information exchange aims to describe mostly the construction phase; highlighting the lack of classes that refer to the operation and maintenance phase. Within this context, this paper proposes the extension of Industry Foundation Classes (IFC) for Asset Management in Infrastructure. A method is developed based on a case study of three highway entities: (i) retaining wall, (ii) gantry and (iii) bridge and a conceptual extension is presented. The results are further discussed and recommendations regarding future research fields are proposed.</p>

2020 ◽  
Vol 10 (13) ◽  
pp. 4437 ◽  
Author(s):  
Carlo Iapige De Gaetani ◽  
Mertkan Mert ◽  
Federica Migliaccio

It is incontrovertible that an exchange of files is essentially required at several stages of the workflow in the architecture, engineering, and construction (AEC) industry. Therefore, investigating and detecting the capabilities/inabilities of building information modeling (BIM) software packages with respect to interoperability can be informative to stakeholders who exchange data between various BIM packages. The work presented in this paper includes a discussion on the interoperability of different software platforms commonly used in the AEC industry. Although, in theory, flawless interoperability of some types of files between different BIM platforms is ensured, in practical applications, this is not always the case. Hence, this research aims to identify faults in data exchange by assessing different possible scenarios where a sample Industry Foundation Classes (IFC) four-dimensions (4D) BIM model and related Gantt charts are exchanged. Throughout the interoperability analysis of both IFC file and Gantt charts, the following checks were carried out: geometrical and nongeometrical information exchange through IFC files, 4D information correct readability, and presence of missing schedule information in Gantt charts after their import/export procedure. The results show that interoperability between the analyzed platforms is not always ensured, providing useful insight into realistic scenarios.


Author(s):  
M. J. Sani ◽  
I. A. Musliman ◽  
A. Abdul Rahman

Abstract. The integration of Geographic Information System (GIS) and the Building Information Modeling (BIM) referred to as the merging of the two systems for the purpose of data interoperability. The need to share information between the two systems is what motivated the integration process purposely for geospatial analysis. This can be achieved through their data exchange formats such as; City Markup Language (CityGML) and Industry Foundation Classes (IFC). The formats are the two most prominent key schemas of GIS and BIM systems respectively. The integration is a step towards information exchange or sharing (data interoperability) between the two systems. The selection of the two most prominent data exchange formats is as a result of their widespread applications in the GIS and BIM domains. However, the differences in geometric and the semantics information hinders data interoperability (information sharing) between GIS and BIM. Also, coupled with the difference in schema structure and the level of information richness between IFC and CityGML. This paper, propose a geometry transformation process that can be used to extract and transform IFC building objects to that of CityGML building objects to enable 3D model design and constructed using BIM tool to be easily reused in 3D GIS applications which will be able to support the CityGML model format. Where the geometric information will be extracted using the IFC tree-structure (hierarchy) and transformed to destination CityGML.


Author(s):  
Karim Farghaly ◽  
Fonbeyin Henry Abanda ◽  
Christos Vidalakis ◽  
Graham Wood

This study aims to enhance the information exchange of assets that consume energy from the BIM systems to the AM systems. The research design employs a participatory action research (PAR) approach where focus group is utilised to develop the information delivery manual (IDM), and prototyping approach is utilised to develop the MVD and the plug-in. To achieve the research aim, firstly, an IDM has been elaborated through the engagement of industry experts with the research team. Based on the IDM, model view concepts are developed and mapped to the IFC standard for exchange of building information models between two software applications. In addition, a Revit plug-in has been developed to add, construct, and export the required assets and pertinent properties for the exchange. Finally, rule types and checking scenarios have been coded and applied on the top of developed MVD to validate the consistency and accuracy of extracted models. Furthermore, a case study is conducted to evaluate the validation logic rule types applied on the top of the developed MVD.


Author(s):  
L. Gobeawan ◽  
S. E. Lin ◽  
X. Liu ◽  
S. T. Wong ◽  
C. W. Lim ◽  
...  

Abstract. There has been a growing interest in integrating vegetation into the built environment in order to ameliorate the negative effects of increasing urbanisation. In Singapore, government policies encourage the inclusion of skyrise greenery into new and existing buildings. To further streamline workflows, statutory BIM (Building Information Modelling) submissions in architecture, engineering and construction (AEC) industries have been mandated. However, landscape plans are still excluded from these BIM submissions due to the lack of a centralised vegetation database and the absence of a standardised BIM format for landscape architectural submissions. This paper presents a streamlined methodology for creating and using a centralised vegetation library for landscape architects. The workflow leverages off the Industry Foundation Classes (IFC) standard for data exchange regardless of the BIM authoring software used and provides a framework of four operational modules: an expandable and low-maintenance species-level vegetation library, a BIM authoring workflow that allows inclusion of vegetation objects, an IFC interface, and a lightweight 3D vegetation model generator. This paper also showcases a use-case of embedding information-enriched 3D vegetation objects into a simulated landscape plan. The proposed workflow, when adopted in AEC industries, will enable governing agencies to track diverse greening efforts by the industry and to potentially include other measurements such as cooling performance or maintainability.


2019 ◽  
Vol 17 (3) ◽  
pp. 301-316 ◽  
Author(s):  
Marjan Sadeghi ◽  
Jonathan Weston Elliott ◽  
Nick Porro ◽  
Kelly Strong

PurposeThis paper aims to represent the results of a case study to establish a building information model (BIM)-enabled workflow to capture and retrieve facility information to deliver integrated handover deliverables.Design/methodology/approachThe Building Handover Information Model (BHIM) framework proposed herein is contextualized given the Construction Operation Information Exchange (COBie) and the level of development schema. The process uses Autodesk Revit as the primary BIM-authoring tool and Dynamo as an add-in for extending Revit’s parametric functionality, BHIM validation, information retrieval and documentation in generating operation and maintenance (O&M) deliverables in the end-user requested format.FindingsGiven the criticality of semantics for model elements in the BHIM and for appropriate interoperability in BIM collaboration, each discipline should establish model development and exchange protocols that define the elements, geometrical and non-geometrical information requirements and acceptable software applications early in the design phase. In this case study, five information categories (location, specifications, warranty, maintenance instructions and Construction Specifications Institute MasterFormat division) were identified as critical for model elements in the BHIM for handover purposes.Originality/valueDesign- and construction-purposed BIM is a standard platform in collaborative architecture, engineering and construction practice, and the models are available for many recently constructed facilities. However, interoperability issues drastically restrict implementation of these models in building information handover and O&M. This study provides essential input regarding BIM exchange protocols and collaborative BIM libraries for handover purposes in collaborative BIM development.


2016 ◽  
Vol 5 (4) ◽  
pp. 25-38
Author(s):  
Daniela Pasini ◽  
Angelo Luigi Camillo Ciribini ◽  
Bruno Daniotti

Considering the remarkable shift that the digitalisation is nowadays bringing about in the building sector, the paper focuses on how the great amount of data collected around assets is changing the way buildings are operated, particularly for what concerns innovation on products, processes and technologies. By establishing a connection between as-designed virtual models and as-delivered physical assets, the paper presents methods and tools based on information management and developed for assessing building behaviours in operation and for defining control strategies for satisfying user needs. The research aims to investigate how the building process could benefit from the availability of multi-faceted information collected in real time (e.g. through sensors) during the operational stages of buildings. Digitally-enabled practices and technologies have been developed and tested for improving a data-driven asset management, by enriching Building Information Models through data gathered through Building Management Systems, according to the Industry Foundation Classes schema.


2015 ◽  
Vol 5 (3) ◽  
pp. 278-289 ◽  
Author(s):  
Peter E.D. Love ◽  
Jingyang Zhou ◽  
Jane Matthews ◽  
Chun-Pong Sing ◽  
Brad Carey

Purpose – The purpose of this paper is to present a systems information model (SIM) that is akin to a building information model (BIM) and can be used by asset managers and staff to make more informed and quicker decisions about maintenance. Design/methodology/approach – The problems associated with managing assets are examined alongside recent international efforts to standardize methods of data collection for meeting the objectives of owners. A case study in the domain of electrical, control and instrumentation (ECI) documentation is examined in detail, with particular reference to the amelioration of errors and omissions in “as built” drawings in order to provide the underlying foundation to support effective asset management (AM). Findings – The findings show that object oriented data models such as SIM provide a robust structure for effective and efficient AM and associated leverage of benefits throughout the entire facility lifecycle of a project. In particular object oriented data enables appropriate and reliable information to be created as a project progresses through its lifecycle, at little cost to the creators. Originality/value – The above special approach to enabling data collection at the point of creation is in alignment with recent Government initiatives such as Construction Operations Building Information Exchange, which are beginning to gather traction within the industry. While the potential benefits for AM of such systems are espoused throughout the industry, there are few successful examples in existence with measurable realization of benefits.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 586 ◽  
Author(s):  
Ziwen Liu ◽  
Qian Wang ◽  
Vincent J.L. Gan ◽  
Luke Peh

Building Information Modeling (BIM) and sustainable buildings are two future cornerstones of the Architectural, Engineering and Construction (AEC) industry. In Singapore’s context, the Green Mark (GM) scoring system is prevalently used to assess the sustainability index of green buildings. BIM provides the semantic and geometry information of buildings, which is proliferated as the technological and process backbone for the green building assessment. This research, through vast literature reviews, identified that the current procedure of achieving a Green Mark score is tedious and cumbersome, which hampers productivity, especially in the calculation of building envelope thermal performance. Furthermore, the project stakeholders work in silos, in a non-collaborative, manual and 2D-based environment for generating relevant documentation to achieve the requisite green mark score. To this end, a cloud-based BIM platform was developed, with the aim of encouraging project stakeholders to collaboratively generate the project’s green mark score digitally in accordance with the regulatory requirements. Through this research, the authors have validated the Envelope Thermal Transfer Value (ETTV) calculation, which is one of the prerequisite criteria to achieve a Green Mark score, through a case study using the developed cloud-based BIM platform. The results indicated that using the proposed platform enhances the productivity and accuracy as far as ETTV calculation is concerned. This study provides a basis for future research in implementing the proposed platform for other criteria under the Green Mark Scheme.


2020 ◽  
Vol 10 (22) ◽  
pp. 8287
Author(s):  
Nicola Moretti ◽  
Xiang Xie ◽  
Jorge Merino ◽  
Justas Brazauskas ◽  
Ajith Kumar Parlikad

Digital Twins (DT) are powerful tools to support asset managers in the operation and maintenance of cognitive buildings. Building Information Models (BIM) are critical for Asset Management (AM), especially when used in conjunction with Internet of Things (IoT) and other asset data collected throughout a building’s lifecycle. However, information contained within BIM models is usually outdated, inaccurate, and incomplete as a result of unclear geometric and semantic data modelling procedures during the building life cycle. The aim of this paper is to develop an openBIM methodology to support dynamic AM applications with limited as-built information availability. The workflow is based on the use of the IfcSharedFacilitiesElements schema for processing the geometric and semantic information of both existing and newly created Industry Foundation Classes (IFC) objects, supporting real-time data integration. The methodology is validated using the West Cambridge DT Research Facility data, demonstrating good potential in supporting an asset anomaly detection application. The proposed workflow increases the automation of the digital AM processes, thanks to the adoption of BIM-IoT integration tools and methods within the context of the development of a building DT.


2019 ◽  
Vol 3 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Brandi Williams ◽  
Brian Haines ◽  
Kathy Roper ◽  
Eunhwa Yang

ABSTRACT The purpose of this paper is to discover the current methods that facility managers use to manage and track assets and identify a set of attributes for Building Information Modelling (BIM) that can improve the efficiency of the current facility management (FM) practice. A survey of over 100 facility management professionals addressed demographics such as industry sector, number of buildings managed, and use of industry standards or internally developed guidelines for data management. This information is correlated with their current asset management strategies to identify minimum sets of attributes that may be used for an FM-specific BIM. In addition, the survey asked the FM professionals their opinion on the importance of specific asset attributes and data management information that could be included in a BIM for FM. The findings of this paper indicate that there is a consensus on basic information (asset type, unique identification, manufacturer, model number, serial number) needed for asset management, and that there is no generally accepted system on how this is done in current practice. FM professionals and software providers may use the information in this paper to establish baseline sets of data to include in BIM during the design phase of projects. This paper provides insight and data as to the current practice of asset management by facility managers. Understanding the actual needs of the FM industry will assist in future research to implement BIM for FM.


Sign in / Sign up

Export Citation Format

Share Document