scholarly journals PRELIMINARY INVESTIGATION ON POSSIBILITY OF SUPER RESOLUTION OF UAV ORTHOIMAGES

Author(s):  
R. Matsuoka ◽  
K. Fukue

Abstract. Since inspection of infrastructures using UAV images seems to be efficient, many systems for infrastructure maintenance using UAV images have been developed recently. For the purpose of more efficient image acquisition, we started an investigation on the possibility of super resolution (SR) of UAV images to obtain high-resolution (HR) orthoimages suitable for infrastructure maintenance. This paper reports an preliminary investigation using existing UAV images acquired for 3D measurement that were not be intended to be utilized for SR. We produced HR orthoimages by three SR methods: image interpolation of a single low-resolution (LR) image by cubic convolution, SR by resampling, and SR based on observation equations. Both SR by resampling and SR based on observation equations utilize multiple overlapping LR images. Results of the investigation demonstrate that SR based on observation equations using multiple overlapping images would be able to provide higher resolution orthoimages than those produced by an ordinary method. The results show that an inaccurate DSM utilized in SR processing degrades the quality of SR results as well. Furthermore, the results illustrate that the quality of the result of SR processing depends rather upon the characteristic of a lens utilized in image acquisition. We think that further investigations on SR using UAV images would be necessary in order to put SR to practical use.

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7903
Author(s):  
Muhammad Hassan Maqsood ◽  
Rafia Mumtaz ◽  
Ihsan Ul Haq ◽  
Uferah Shafi ◽  
Syed Mohammad Hassan Zaidi ◽  
...  

Wheat yellow rust is a common agricultural disease that affects the crop every year across the world. The disease not only negatively impacts the quality of the yield but the quantity as well, which results in adverse impact on economy and food supply. It is highly desired to develop methods for fast and accurate detection of yellow rust in wheat crop; however, high-resolution images are not always available which hinders the ability of trained models in detection tasks. The approach presented in this study harnesses the power of super-resolution generative adversarial networks (SRGAN) for upsampling the images before using them to train deep learning models for the detection of wheat yellow rust. After preprocessing the data for noise removal, SRGANs are used for upsampling the images to increase their resolution which helps convolutional neural network (CNN) in learning high-quality features during training. This study empirically shows that SRGANs can be used effectively to improve the quality of images and produce significantly better results when compared with models trained using low-resolution images. This is evident from the results obtained on upsampled images, i.e., 83% of overall test accuracy, which are substantially better than the overall test accuracy achieved for low-resolution images, i.e., 75%. The proposed approach can be used in other real-world scenarios where images are of low resolution due to the unavailability of high-resolution camera in edge devices.


Author(s):  
R. S. Hansen ◽  
D. W. Waldram ◽  
T. Q. Thai ◽  
R. B. Berke

Abstract Background High-resolution Digital Image Correlation (DIC) measurements have previously been produced by stitching of neighboring images, which often requires short working distances. Separately, the image processing community has developed super resolution (SR) imaging techniques, which improve resolution by combining multiple overlapping images. Objective This work investigates the novel pairing of super resolution with digital image correlation, as an alternative method to produce high-resolution full-field strain measurements. Methods First, an image reconstruction test is performed, comparing the ability of three previously published SR algorithms to replicate a high-resolution image. Second, an applied translation is compared against DIC measurement using both low- and super-resolution images. Third, a ring sample is mechanically deformed and DIC strain measurements from low- and super-resolution images are compared. Results SR measurements show improvements compared to low-resolution images, although they do not perfectly replicate the high-resolution image. SR-DIC demonstrates reduced error and improved confidence in measuring rigid body translation when compared to low resolution alternatives, and it also shows improvement in spatial resolution for strain measurements of ring deformation. Conclusions Super resolution imaging can be effectively paired with Digital Image Correlation, offering improved spatial resolution, reduced error, and increased measurement confidence.


2021 ◽  
pp. 1-15
Author(s):  
Yongjie Chu ◽  
Touqeer Ahmad ◽  
Lindu Zhao

Low-resolution face recognition with one-shot is a prevalent problem encountered in law enforcement, where it generally requires to recognize the low-resolution face images captured by surveillance cameras with the only one high-resolution profile face image in the database. The problem is very tough because the available samples is quite few and the quality of unknown images is quite low. To effectively address this issue, this paper proposes Adapted Discriminative Coupled Mappings (AdaDCM) approach, which integrates domain adaptation and discriminative learning. To achieve good domain adaptation performance for small size dataset, a new domain adaptation technique called Bidirectional Locality Matching-based Domain Adaptation (BLM-DA) is first developed. Then the proposed AdaDCM is formulated by unifying BLM-DA and discriminative coupled mappings into a single framework. AdaDCM is extensively evaluated on FERET, LFW, and SCface databases, which includes LR face images obtained in constrained, unconstrained, and real-world environment. The promising results on these datasets demonstrate the effectiveness of AdaDCM in LR face recognition with one-shot.


2017 ◽  
Vol 21 (4) ◽  
pp. 2187-2201 ◽  
Author(s):  
Pere Quintana-Seguí ◽  
Marco Turco ◽  
Sixto Herrera ◽  
Gonzalo Miguez-Macho

Abstract. Offline land surface model (LSM) simulations are useful for studying the continental hydrological cycle. Because of the nonlinearities in the models, the results are very sensitive to the quality of the meteorological forcing; thus, high-quality gridded datasets of screen-level meteorological variables are needed. Precipitation datasets are particularly difficult to produce due to the inherent spatial and temporal heterogeneity of that variable. They do, however, have a large impact on the simulations, and it is thus necessary to carefully evaluate their quality in great detail. This paper reports the quality of two high-resolution precipitation datasets for Spain at the daily time scale: the new SAFRAN-based dataset and Spain02. SAFRAN is a meteorological analysis system that was designed to force LSMs and has recently been extended to the entirety of Spain for a long period of time (1979/1980–2013/2014). Spain02 is a daily precipitation dataset for Spain and was created mainly to validate regional climate models. In addition, ERA-Interim is included in the comparison to show the differences between local high-resolution and global low-resolution products. The study compares the different precipitation analyses with rain gauge data and assesses their temporal and spatial similarities to the observations. The validation of SAFRAN with independent data shows that this is a robust product. SAFRAN and Spain02 have very similar scores, although the latter slightly surpasses the former. The scores are robust with altitude and throughout the year, save perhaps in summer when a diminished skill is observed. As expected, SAFRAN and Spain02 perform better than ERA-Interim, which has difficulty capturing the effects of the relief on precipitation due to its low resolution. However, ERA-Interim reproduces spells remarkably well in contrast to the low skill shown by the high-resolution products. The high-resolution gridded products overestimate the number of precipitation days, which is a problem that affects SAFRAN more than Spain02 and is likely caused by the interpolation method. Both SAFRAN and Spain02 underestimate high precipitation events, but SAFRAN does so more than Spain02. The overestimation of low precipitation events and the underestimation of intense episodes will probably have hydrological consequences once the data are used to force a land surface or hydrological model.


Author(s):  
Darakhshan R. Khan

Region filling which has another name inpainting, is an approach to find the values of missing pixels from data available in the remaining portion of the image. The missing information must be recalculated in a distinctly convincing manner, such that, image look seamless. This research work has built a methodology for completely automating patch priority based region filling process. To reduce the computational time, low resolution image is constructed from input image. Based on texel of an image, patch size is determined. Several low resolution image with missing region filled is generated using region filling algorithm. Pixel information from these low resolution images is consolidated to produce single low resolution region filled image. Finally, super resolution algorithm is applied to enhance the quality of image and regain all specifics of image. This methodology of identifying patch size based on input fed has an advantage over filling algorithms which in true sense automate the process of region filling, to deal with sensitivity in region filling, algorithm different parameter settings are used and functioning with coarse version of image will notably reduce the computational time.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4601
Author(s):  
Juan Wen ◽  
Yangjing Shi ◽  
Xiaoshi Zhou ◽  
Yiming Xue

Currently, various agricultural image classification tasks are carried out on high-resolution images. However, in some cases, we cannot get enough high-resolution images for classification, which significantly affects classification performance. In this paper, we design a crop disease classification network based on Enhanced Super-Resolution Generative adversarial networks (ESRGAN) when only an insufficient number of low-resolution target images are available. First, ESRGAN is used to recover super-resolution crop images from low-resolution images. Transfer learning is applied in model training to compensate for the lack of training samples. Then, we test the performance of the generated super-resolution images in crop disease classification task. Extensive experiments show that using the fine-tuned ESRGAN model can recover realistic crop information and improve the accuracy of crop disease classification, compared with the other four image super-resolution methods.


Author(s):  
Dong Seon Cheng ◽  
Marco Cristani ◽  
Vittorio Murino

Image super-resolution is one of the most appealing applications of image processing, capable of retrieving a high resolution image by fusing several registered low resolution images depicting an object of interest. However, employing super-resolution in video data is challenging: a video sequence generally contains a lot of scattered information regarding several objects of interest in cluttered scenes. Especially with hand-held cameras, the overall quality may be poor due to low resolution or unsteadiness. The objective of this chapter is to demonstrate why standard image super-resolution fails in video data, which are the problems that arise, and how we can overcome these problems. In our first contribution, we propose a novel Bayesian framework for super-resolution of persistent objects of interest in video sequences. We call this process Distillation. In the traditional formulation of the image super-resolution problem, the observed target is (1) always the same, (2) acquired using a camera making small movements, and (3) found in a number of low resolution images sufficient to recover high-frequency information. These assumptions are usually unsatisfied in real world video acquisitions and often beyond the control of the video operator. With Distillation, we aim to extend and to generalize the image super-resolution task, embedding it in a structured framework that accurately distills all the informative bits of an object of interest. In practice, the Distillation process: i) individuates, in a semi supervised way, a set of objects of interest, clustering the related video frames and registering them with respect to global rigid transformations; ii) for each one, produces a high resolution image, by weighting each pixel according to the information retrieved about the object of interest. As a second contribution, we extend the Distillation process to deal with objects of interest whose transformations in the appearance are not (only) rigid. Such process, built on top of the Distillation, is hierarchical, in the sense that a process of clustering is applied recursively, beginning with the analysis of whole frames, and selectively focusing on smaller sub-regions whose isolated motion can be reasonably assumed as rigid. The ultimate product of the overall process is a strip of images that describe at high resolution the dynamics of the video, switching between alternative local descriptions in response to visual changes. Our approach is first tested on synthetic data, obtaining encouraging comparative results with respect to known super-resolution techniques, and a good robustness against noise. Second, real data coming from different videos are considered, trying to solve the major details of the objects in motion.


2019 ◽  
Vol 9 (20) ◽  
pp. 4444
Author(s):  
Byunghyun Kim ◽  
Soojin Cho

In most hyperspectral super-resolution (HSR) methods, which are techniques used to improve the resolution of hyperspectral images (HSIs), the HSI and the target RGB image are assumed to have identical fields of view. However, because implementing these identical fields of view is difficult in practical applications, in this paper, we propose a HSR method that is applicable when an HSI and a target RGB image have different spatial information. The proposed HSR method first creates a low-resolution RGB image from a given HSI. Next, a histogram matching is performed on a high-resolution RGB image and a low-resolution RGB image obtained from an HSI. Finally, the proposed method optimizes endmember abundance of the high-resolution HSI towards the histogram-matched high-resolution RGB image. The entire procedure is evaluated using an open HSI dataset, the Harvard dataset, by adding spatial mismatch to the dataset. The spatial mismatch is implemented by shear transformation and cutting off the upper and left sides of the target RGB image. The proposed method achieved a lower error rate across the entire dataset, confirming its capability for super-resolution using images that have different fields of view.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mahmoud M. Khattab ◽  
Akram M. Zeki ◽  
Ali A. Alwan ◽  
Belgacem Bouallegue ◽  
Safaa S. Matter ◽  
...  

The primary goal of the multiframe super-resolution image reconstruction is to produce an image with a higher resolution by integrating information extracted from a set of corresponding images with low resolution, which is used in various fields. However, super-resolution image reconstruction approaches are typically affected by annoying restorative artifacts, including blurring, noise, and staircasing effect. Accordingly, it is always difficult to balance between smoothness and edge preservation. In this paper, we intend to enhance the efficiency of multiframe super-resolution image reconstruction in order to optimize both analysis and human interpretation processes by improving the pictorial information and enhancing the automatic machine perception. As a result, we propose new approaches that firstly rely on estimating the initial high-resolution image through preprocessing of the reference low-resolution image based on median, mean, Lucy-Richardson, and Wiener filters. This preprocessing stage is used to overcome the degradation present in the reference low-resolution image, which is a suitable kernel for producing the initial high-resolution image to be used in the reconstruction phase of the final image. Then, L2 norm is employed for the data-fidelity term to minimize the residual among the predicted high-resolution image and the observed low-resolution images. Finally, bilateral total variation prior model is utilized to restrict the minimization function to a stable state of the generated HR image. The experimental results of the synthetic data indicate that the proposed approaches have enhanced efficiency visually and quantitatively compared to other existing approaches.


Sign in / Sign up

Export Citation Format

Share Document