scholarly journals WEIGHTED POINT CLOUD AUGMENTATION FOR NEURAL NETWORK TRAINING DATA CLASS-IMBALANCE

Author(s):  
D. Griffiths ◽  
J. Boehm

<p><strong>Abstract.</strong> Recent developments in the field of deep learning for 3D data have demonstrated promising potential for end-to-end learning directly from point clouds. However, many real-world point clouds contain a large class im-balance due to the natural class im-balance observed in nature. For example, a 3D scan of an urban environment will consist mostly of road and façade, whereas other objects such as poles will be under-represented. In this paper we address this issue by employing a weighted augmentation to increase classes that contain fewer points. By mitigating the class im-balance present in the data we demonstrate that a standard PointNet++ deep neural network can achieve higher performance at inference on validation data. This was observed as an increase of F1 score of 19% and 25% on two test benchmark datasets; ScanNet and Semantic3D respectively where no class im-balance pre-processing had been performed. Our networks performed better on both highly-represented and under-represented classes, which indicates that the network is learning more robust and meaningful features when the loss function is not overly exposed to only a few classes.</p>

2018 ◽  
Author(s):  
Roman Zubatyuk ◽  
Justin S. Smith ◽  
Jerzy Leszczynski ◽  
Olexandr Isayev

<p>Atomic and molecular properties could be evaluated from the fundamental Schrodinger’s equation and therefore represent different modalities of the same quantum phenomena. Here we present AIMNet, a modular and chemically inspired deep neural network potential. We used AIMNet with multitarget training to learn multiple modalities of the state of the atom in a molecular system. The resulting model shows on several benchmark datasets the state-of-the-art accuracy, comparable to the results of orders of magnitude more expensive DFT methods. It can simultaneously predict several atomic and molecular properties without an increase in computational cost. With AIMNet we show a new dimension of transferability: the ability to learn new targets utilizing multimodal information from previous training. The model can learn implicit solvation energy (like SMD) utilizing only a fraction of original training data, and archive MAD error of 1.1 kcal/mol compared to experimental solvation free energies in MNSol database.</p>


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Gao ◽  
D Stojanovski ◽  
A Parker ◽  
P Marques ◽  
S Heitner ◽  
...  

Abstract Background Correctly identifying views acquired in a 2D echocardiographic examination is paramount to post-processing and quantification steps often performed as part of most clinical workflows. In many exams, particularly in stress echocardiography, microbubble contrast is used which greatly affects the appearance of the cardiac views. Here we present a bespoke, fully automated convolutional neural network (CNN) which identifies apical 2, 3, and 4 chamber, and short axis (SAX) views acquired with and without contrast. The CNN was tested in a completely independent, external dataset with the data acquired in a different country than that used to train the neural network. Methods Training data comprised of 2D echocardiograms was taken from 1014 subjects from a prospective multisite, multi-vendor, UK trial with the number of frames in each view greater than 17,500. Prior to view classification model training, images were processed using standard techniques to ensure homogenous and normalised image inputs to the training pipeline. A bespoke CNN was built using the minimum number of convolutional layers required with batch normalisation, and including dropout for reducing overfitting. Before processing, the data was split into 90% for model training (211,958 frames), and 10% used as a validation dataset (23,946 frames). Image frames from different subjects were separated out entirely amongst the training and validation datasets. Further, a separate trial dataset of 240 studies acquired in the USA was used as an independent test dataset (39,401 frames). Results Figure 1 shows the confusion matrices for both validation data (left) and independent test data (right), with an overall accuracy of 96% and 95% for the validation and test datasets respectively. The accuracy for the non-contrast cardiac views of &gt;99% exceeds that seen in other works. The combined datasets included images acquired across ultrasound manufacturers and models from 12 clinical sites. Conclusion We have developed a CNN capable of automatically accurately identifying all relevant cardiac views used in “real world” echo exams, including views acquired with contrast. Use of the CNN in a routine clinical workflow could improve efficiency of quantification steps performed after image acquisition. This was tested on an independent dataset acquired in a different country to that used to train the model and was found to perform similarly thus indicating the generalisability of the model. Figure 1. Confusion matrices Funding Acknowledgement Type of funding source: Private company. Main funding source(s): Ultromics Ltd.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 830
Author(s):  
Seokho Kang

k-nearest neighbor (kNN) is a widely used learning algorithm for supervised learning tasks. In practice, the main challenge when using kNN is its high sensitivity to its hyperparameter setting, including the number of nearest neighbors k, the distance function, and the weighting function. To improve the robustness to hyperparameters, this study presents a novel kNN learning method based on a graph neural network, named kNNGNN. Given training data, the method learns a task-specific kNN rule in an end-to-end fashion by means of a graph neural network that takes the kNN graph of an instance to predict the label of the instance. The distance and weighting functions are implicitly embedded within the graph neural network. For a query instance, the prediction is obtained by performing a kNN search from the training data to create a kNN graph and passing it through the graph neural network. The effectiveness of the proposed method is demonstrated using various benchmark datasets for classification and regression tasks.


2021 ◽  
Author(s):  
Yash Chauhan ◽  
Prateek Singh

Coins recognition systems have humungous applications from vending and slot machines to banking and management firms which directly translate to a high volume of research regarding the development of methods for such classification. In recent years, academic research has shifted towards a computer vision approach for sorting coins due to the advancement in the field of deep learning. However, most of the documented work utilizes what is known as ‘Transfer Learning’ in which we reuse a pre-trained model of a fixed architecture as a starting point for our training. While such an approach saves us a lot of time and effort, the generic nature of the pre-trained model can often become a bottleneck for performance on a specialized problem such as coin classification. This study develops a convolutional neural network (CNN) model from scratch and tests it against a widely-used general-purpose architecture known as Googlenet. We have shown in this study by comparing the performance of our model with that of Googlenet (documented in various previous studies) that a more straightforward and specialized architecture is more optimal than a more complex general architecture for the coin classification problem. The model developed in this study is trained and tested on 720 and 180 images of Indian coins of different denominations, respectively. The final accuracy gained by the model is 91.62% on the training data, while the accuracy is 90.55% on the validation data.


Author(s):  
S. K. Gupta ◽  
M. Jhunjhunwalla ◽  
A. Bhardwaj ◽  
D. P. Shukla

Abstract. Machine learning methods such as artificial neural network, support vector machine etc. require a large amount of training data, however, the number of landslide occurrences are limited in a study area. The limited number of landslides leads to a small number of positive class pixels in the training data. On contrary, the number of non-landslide pixels (negative class pixels) are enormous in numbers. This under-represented data and severe class distribution skew create a data imbalance for learning algorithms and suboptimal models, which are biased towards the majority class (non-landslide pixels) and have low performance on the minority class (landslide pixels).In this work, we have used two algorithms namely EasyEnsemble and BalanceCascade for balancing the data. This balanced data is used with feature selection methods such as fisher discriminant analysis (FDA), logistic regression (LR) and artificial neural network (ANN) to generate LSZ maps The results of the study show that ANN with balanced data has major improvements in preparation of susceptibility maps over imbalanced data, where as the LR method is ill-effected by data balancing algorithms. The FDA does not show significant changes between balanced and imbalanced data.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fahad Alharbi ◽  
Khalil El Hindi ◽  
Saad Al Ahmadi ◽  
Hussien Alsalamn

Noise in training data increases the tendency of many machine learning methods to overfit the training data, which undermines the performance. Outliers occur in big data as a result of various factors, including human errors. In this work, we present a novel discriminator model for the identification of outliers in the training data. We propose a systematic approach for creating training datasets to train the discriminator based on a small number of genuine instances (trusted data). The noise discriminator is a convolutional neural network (CNN). We evaluate the discriminator’s performance using several benchmark datasets and with different noise ratios. We inserted random noise in each dataset and trained discriminators to clean them. Different discriminators were trained using different numbers of genuine instances with and without data augmentation. We compare the performance of the proposed noise-discriminator method with seven other methods proposed in the literature using several benchmark datasets. Our empirical results indicate that the proposed method is very competitive to the other methods. It actually outperforms them for pair noise.


2020 ◽  
Vol 500 (2) ◽  
pp. 1633-1644
Author(s):  
Róbert Beck ◽  
István Szapudi ◽  
Heather Flewelling ◽  
Conrad Holmberg ◽  
Eugene Magnier ◽  
...  

ABSTRACT The Pan-STARRS1 (PS1) 3π survey is a comprehensive optical imaging survey of three quarters of the sky in the grizy broad-band photometric filters. We present the methodology used in assembling the source classification and photometric redshift (photo-z) catalogue for PS1 3π Data Release 1, titled Pan-STARRS1 Source Types and Redshifts with Machine learning (PS1-STRM). For both main data products, we use neural network architectures, trained on a compilation of public spectroscopic measurements that has been cross-matched with PS1 sources. We quantify the parameter space coverage of our training data set, and flag extrapolation using self-organizing maps. We perform a Monte Carlo sampling of the photometry to estimate photo-z uncertainty. The final catalogue contains 2902 054 648 objects. On our validation data set, for non-extrapolated sources, we achieve an overall classification accuracy of $98.1{{\ \rm per\ cent}}$ for galaxies, $97.8{{\ \rm per\ cent}}$ for stars, and $96.6{{\ \rm per\ cent}}$ for quasars. Regarding the galaxy photo-z estimation, we attain an overall bias of 〈Δznorm〉 = 0.0005, a standard deviation of σ(Δznorm) = 0.0322, a median absolute deviation of MAD(Δznorm) = 0.0161, and an outlier fraction of $P\left(|\Delta z_{\mathrm{norm}}|\gt 0.15\right)=1.89{{\ \rm per\ cent}}$. The catalogue will be made available as a high-level science product via the Mikulski Archive for Space Telescopes.


Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 220-236 ◽  
Author(s):  
Daniel P. Hampson ◽  
James S. Schuelke ◽  
John A. Quirein

We describe a new method for predicting well‐log properties from seismic data. The analysis data consist of a series of target logs from wells which tie a 3-D seismic volume. The target logs theoretically may be of any type; however, the greatest success to date has been in predicting porosity logs. From the 3-D seismic volume a series of sample‐based attributes is calculated. The objective is to derive a multiattribute transform, which is a linear or nonlinear transform between a subset of the attributes and the target log values. The selected subset is determined by a process of forward stepwise regression, which derives increasingly larger subsets of attributes. An extension of conventional crossplotting involves the use of a convolutional operator to resolve frequency differences between the target logs and the seismic data. In the linear mode, the transform consists of a series of weights derived by least‐squares minimization. In the nonlinear mode, a neural network is trained, using the selected attributes as inputs. Two types of neural networks have been evaluated: the multilayer feedforward network (MLFN) and the probabilistic neural network (PNN). Because of its mathematical simplicity, the PNN appears to be the network of choice. To estimate the reliability of the derived multiattribute transform, crossvalidation is used. In this process, each well is systematically removed from the training set, and the transform is rederived from the remaining wells. The prediction error for the hidden well is then calculated. The validation error, which is the average error for all hidden wells, is used as a measure of the likely prediction error when the transform is applied to the seismic volume. The method is applied to two real data sets. In each case, we see a continuous improvement in predictive power as we progress from single‐attribute regression to linear multiattribute prediction to neural network prediction. This improvement is evident not only on the training data but, more importantly, on the validation data. In addition, the neural network shows a significant improvement in resolution over that from linear regression.


2021 ◽  
Author(s):  
Vahid Gholami ◽  
Hossein Sahour

Abstract Groundwater drawdown is typically measured using pumping tests and field experiments; however, the traditional methods are time-consuming and costly when applied to extensive areas. In this research, a methodology is introduced based on artificial neural network (ANN)s and field measurements in an alluvial aquifer in the north of Iran. First, the annual drawdown as the output of the ANN models in 250 piezometric wells was measured, and the data were divided into three categories of training data, cross-validation data, and test data. Then, the effective factors in groundwater drawdown including groundwater depth, annual precipitation, annual evaporation, the transmissivity of the aquifer formation, elevation, distance from the sea, distance from water sources (recharge), population density, and groundwater extraction in the influence radius of each well (1000 m) were identified and used as the inputs of the ANN models. Several ANN methods were evaluated, and the predictions were compared with the observations. Results show that, the modular neural network (MNN) showed the highest performance in modeling groundwater drawdown ​​(Training R-sqr = 0.96, test R-sqr = 0.81). The optimum network was fitted to available input data to map the annual drawdown ​​across the entire aquifer. The accuracy assessment of the final map yielded favorable results (R-sqr = 0.8). The adopted methodology can be applied for the prediction of groundwater drawdown in the study site and similar settings elsewhere.


Author(s):  
Yuxi Zhou ◽  
Shenda Hong ◽  
Junyuan Shang ◽  
Meng Wu ◽  
Qingyun Wang ◽  
...  

Atrial Fibrillation (AF) is an abnormal heart rhythm which can trigger cardiac arrest and sudden death. Nevertheless, its interpretation is mostly done by medical experts due to high error rates of computerized interpretation. One study found that only about 66% of AF were correctly recognized from noisy ECGs. This is in part due to insufficient training data, class skewness, as well as semantical ambiguities caused by noisy segments in an ECG record. In this paper, we propose a K-margin-based Residual-Convolution-Recurrent neural network (K-margin-based RCR-net) for AF detection from noisy ECGs. In detail, a skewness-driven dynamic augmentation method is employed to handle the problems of data inadequacy and class imbalance. A novel RCR-net is proposed to automatically extract both long-term rhythm-level and local heartbeat-level characters. Finally, we present a K-margin-based diagnosis model to automatically focus on the most important parts of an ECG record and handle noise by naturally exploiting expected consistency among the segments associated for each record. The experimental results demonstrate that the proposed method with 0.8125 F1NAOP score outperforms all state-of-the-art deep learning methods for AF detection task by 6.8%.


Sign in / Sign up

Export Citation Format

Share Document