scholarly journals RESEARCH AND DISPLAY OF THE RESTORATION OF ZHAOXI-LING BASED ON VR AND AR TECHNOLOGY

Author(s):  
D. Li ◽  
P. Cao

<p><strong>Abstract.</strong> Zhaoxi-ling, the tomb of the Empress Xiao Zhuang who was one of the greatest female politicians of Qing Dynasty, is located in the southeast of the Xiao-ling of Eastern Royal Tombs of the Qing Dynasty. This paper is based on the repeated mapping and research of the Zhaoxi-ling by the School of Architecture of Tianjin University, and a comprehensive mapping work was conducted with digital techniques such as three-dimensional laser scanning and photogrammetry from 2012 to 2018. In addition, the historical research and restoration design of Zhaoxi-ling has been deeply studied by the School of Architecture of Tianjin University since 2011, and a wealth of basic materials and design achievements has been formed, including both the restored 2D drawings and restored 3D model. The paper uses VR and AR technology to build a virtual museum for visualizing the restoration study of Zhaoxi-ling, so that the majority of scholars have the opportunity to further research Zhaoxi-ling. At the same time, a unique display would be designed for Zhaoxi-ling by using VR and AR technology, breaking through the traditional display method and showing the unique value of Zhaoxi-ling.</p>

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chuan Lu

Aiming at the problem of low accuracy and poor integrity of traditional Qing Dynasty ancient architecture 3D virtual reconstruction algorithm, a 3D virtual reconstruction algorithm of Qing Dynasty ancient architecture based on image sequence is proposed. Acquire the sequence images of ancient buildings in the Qing Dynasty through the pinhole camera model, analyze the projective space and reconstruction space of the sequence images, redefine the similarity measurement coefficient according to the improved 2DPCA-SIFT feature matching algorithm, match the feature points of the ancient architecture images in the Qing Dynasty, and use random sampling to be consistent. The algorithm solves the basic matrix, removes the interference error in the image reconstruction process, and realizes the design of the three-dimensional reconstruction algorithm through image sequence fusion. The experimental results show that, compared with the existing methods, the completeness of the three-dimensional virtual reconstruction 3D model of ancient Qing Dynasty buildings constructed by the designed algorithm is 87.26% on average, and the completeness and accuracy of the 3D model construction of the subparts of the ancient Qing Dynasty buildings of this method are better. The height of the building fully shows that the designed building has good performance in the construction of the three-dimensional model of ancient buildings in the Qing Dynasty.


2018 ◽  
Vol 18 ◽  
pp. 98-105
Author(s):  
N. V. Pavliuk

The issues related to the introduction of innovative methods, technologies and technological means in the investigation of crimes are considered. It is noted that one of the main directions of the development of Criminalistics is the assimilation of the virtual reality associated with computerization of spheres of life, implementation of modern technologies and their use in law enforcement. Technology use of laser scanning of terrain and objects resulting in 3D model is produced allows several times to increase informative value of data collected at the incident scene, provides a visual and convenient visualization in three-dimensional form. As against photo and video images, 3D model has a stereoscopic image and the ability to freely change the angle while viewing. Besides to scanning results can be stored on any digital media without the possibility of changes or adjustments. Attention is focused on the technological capabilities of 3D-visualization systems on examples of their use in foreign countries as technological means of capturing the situation of the scene and the subsequent of a crime reconstruction. Thus, using a portable three-dimensional imaging system for working with volumetric traces at a crime scene, it is possible to obtain accurate three-dimensional images of traces of protectors or footprints (shoes) on soil and snow. This system is an alternative to traditional methods of fixing evidence: photofixing and making plaster casts. Unlike other systems, new approach does not require the use of lasers. The expediency of expanding the range of 3D laser scanning system use in modern investigative and judicial practice of our state with the aim of increasing the level of provision of pre-trial investigation authorities with technological means and bringing it closer to European standards is argued.


Author(s):  
S. Artese ◽  
J. L. Lerma ◽  
J. Aznar Molla ◽  
R. M. Sánchez ◽  
R. Zinno

<p><strong>Abstract.</strong> The three-dimensional (3D) documentation and surveying of cultural heritage can be carried out following several geomatics techniques such as laser scanning and thermography in order to detect the original 3D shape after applying reverse engineering solutions. In almost all cases, the integration of data collected by different instruments is needed to achieve a successful and comprehensive 3D model of the as-built architectural shape of the historical building. This paper describes the operations carried out by the authors to determine the as-built 3D model of the Escuelas Pias Church, related namely to the dome and circular nave. After the description of the church and historical notes, attention will be driven to the indirect registration results obtained with three different laser scanning software packages, highlighting similarities and differences, and the consequences while generating meshes. The 3D model carried out will then be described and the results of some investigations with regard to the hypotheses about the design of the dome and the origin of the alterations will be presented.</p>


Author(s):  
A. Anastasiou ◽  
E. Syrokou ◽  
S. Tapinaki ◽  
A. Georgopoulos

Abstract. The aim of the present paper is the geometric documentation of the church of St Spyridon using modern digital methods of data collection and processing. The church is located in the Medieval City of Rhodes and the residues of several different historical phases found in the church prove the rarity and the amount of alterations it underwent over the years.Geodetic measurements, laser scanning and acquisition of photographic data were performed, in order to construct the 3D model of the church. 23 drawings were drafted at a scale of 1:50, including horizontal sections, exterior and vertical sections. The projected information of each drawing is described with the help of the corresponding orthophotographs. Moreover, the three-dimensional photorealistic model (textured model) of the church was created, as well as a stereoscopic video and interactive virtual tour, via the 3DHOP platform.


2021 ◽  
Vol 310 ◽  
pp. 05002
Author(s):  
Yousef Naanouh ◽  
Vasyutinskaya Stanislava

Three-dimensional digital technology is important in the maintenance and monitoring of archeological sites. This paper focuses on using a combination of terrestrial laser scanning and unmanned aerial vehicle (Phantom 4 pro) photogrammetry to establish a three-dimensional model and associated digital documentation of Beaufort castle (Arnoun, South Lebanon). The overall discrepancy between the two technologies was sufficient for the generation of convergent data. Thus, the terrestrial laser scanning and phantom 4 photogrammetry data were aligned and merged post-conversion into compatible extensions. A three-D dimensional (3D) model, with planar and perpendicular geometries, based on the hybrid datapoint cloud was developed. This study demonstrates the potential of using the integration of terrestrial laser scanning and photogrammetry in 3D digital documentation and spatial analysis of the Lebanese archeological sites.


Author(s):  
C. K. A. F. Che Ku Abdullah ◽  
N. Z. S. Baharuddin ◽  
M. F. M. Ariff ◽  
Z. Majid ◽  
C. L. Lau ◽  
...  

Laser Scanner technology become an option in the process of collecting data nowadays. It is composed of Airborne Laser Scanner (ALS) and Terrestrial Laser Scanner (TLS). ALS like Phoenix AL3-32 can provide accurate information from the viewpoint of rooftop while TLS as Leica C10 can provide complete data for building facade. However if both are integrated, it is able to produce more accurate data. The focus of this study is to integrate both types of data acquisition of ALS and TLS and determine the accuracy of the data obtained. The final results acquired will be used to generate models of three-dimensional (3D) buildings. The scope of this study is focusing on data acquisition of UTM Eco-home through laser scanning methods such as ALS which scanning on the roof and the TLS which scanning on building façade. Both device is used to ensure that no part of the building that are not scanned. In data integration process, both are registered by the selected points among the manmade features which are clearly visible in Cyclone 7.3 software. The accuracy of integrated data is determined based on the accuracy assessment which is carried out using man-made registration methods. The result of integration process can achieve below 0.04m. This integrated data then are used to generate a 3D model of UTM Eco-home building using SketchUp software. In conclusion, the combination of the data acquisition integration between ALS and TLS would produce the accurate integrated data and able to use for generate a 3D model of UTM eco-home. For visualization purposes, the 3D building model which generated is prepared in Level of Detail 3 (LOD3) which recommended by City Geographic Mark-Up Language (CityGML).


2021 ◽  
Vol 10 (88) ◽  

With the rapid advances in visual perception and processing technologies, it has become easier to create 3D models (three dimensional visuals that have width height and depth data) of objects by processing 2D (two dimensional images that have width and height data like photography) images obtained from real life with the help of certain algorithms. These systems, which convert from two-dimensional painting to three-dimensional model format, now describe and translate most objects correctly. Like photogrametry and laser scanning, is used to quickly transfer large areas to 3D media, especially with coating materials. 3D images obtained by scanning 2D images show differences in terms of the obtained model quality and polygon density. This system, which serves to obtain very fast 3D models, is frequently used in computer games development, digital art and production / cinema studies, painting, sculpting, ceramic and photography to obtain a spesific result. In the research, image-based 3D model creation technologies were mentioned. The types of this technology and its usage purposes, methods and problems are the topics of this article Also problems faced while engaging the models accured from this methods to other platforms are included in the article. In this context, the aim of the study is to recognize the new scanning modeling processes and algorithms supported by artificial intelligence and to determine the usage areas of these modeling techniques in art. Keywords: Art, 3D Model, A.I., LIDAR, Photogrametry, Digital Art


2022 ◽  
pp. 4195-4207
Author(s):  
Marwa Mohamed ◽  
Zahra Ezz El Din ◽  
Laila Qais

    A three-dimensional (3D) model extraction represents the best way to reflect the reality in all details. This explains the trends and tendency of many scientific disciplines towards making measurements, calculations and monitoring in various fields using such model. Although there are many ways to produce the 3D model like as images, integration techniques, and laser scanning, however, the quality of their products is not the same in terms of accuracy and detail. This article aims to assess the 3D point clouds model accuracy results from close range images and laser scan data based on Agi soft photoscan and cloud compare software to determine the compatibility of both datasets for several applications. College of Science, Departments of Mathematics and Computer in the University of Baghdad campus were exploited to create the proposed 3D model as this area location, which is one of the distinctive features of the university, allows making measurements freely from all sides. Results of this study supported by statistical analysis including 2 sample T-test and RMSE calculation in addition to visual comparison. Through this research, we note that the laser3D model provides many points in a short time, so it will reduce the field work and also its data is faster in processing to produce a reliable model of the scanned area compared with data derived from photogrammetry, then the difference were computed for all the reference points.


Author(s):  
N. A. S. Russhakim ◽  
M. F. M. Ariff ◽  
Z. Majid ◽  
K. M. Idris ◽  
N. Darwin ◽  
...  

<p><strong>Abstract.</strong> The popularity of Terrestrial Laser Scanner (TLS) has been introduced into a field of surveying and has increased dramatically especially in producing the 3D model of the building. The used of terrestrial laser scanning (TLS) is becoming rapidly popular because of its ability in several applications, especially the ability to observe complex documentation of complex building and observe millions of point cloud in three-dimensional in a short period. Users of building plan usually find it difficult to translate the traditional two-dimensional (2D) data on maps they see on a flat piece of paper to three-dimensional (3D). The TLS is able to record thousands of point clouds which contains very rich of geometry details and made the processing usually takes longer time. In addition, the demand of building survey work has made the surveyors need to obtain the data with full of accuracy and time saves. Therefore, the aim of this study is to study the limitation uses of TLS and its suitability for building survey and mapping. In this study, the efficiency of TLS Leica C10 for building survey was determined in term of its accuracy and comparing with Zeb-Revo Handheld Mobile Laser Scanning (MLS) and the distometer. The accuracy for scanned data from both, TLS and MLS were compared with the Distometer by using root mean square error (RMSE) formula. Then, the 3D model of the building for both data, TLS and MLS were produced to analyze the visualization for different type of scanners. The software used; Autodesk Recap, Autodesk Revit, Leica Cyclone Software, Autocad Software and Geo Slam Software. The RMSE for TLS technique is 0.001<span class="thinspace"></span>m meanwhile, RMSE for MLS technique is 0.007<span class="thinspace"></span>m. The difference between these two techniques is 0.006<span class="thinspace"></span>m. The 3D model of building for both models did not have too much different but the scanned data from TLS is much easier to process and generate the 3D model compared to scanned data from MLS. It is because the scanned data from TLS comes with an image, while none from MLS scanned data. There are limitations of TLS for building survey such as water and glass window but this study proved that acquiring data by TLS is better than using MLS.</p>


2010 ◽  
Vol 4 (1-2) ◽  
pp. 81-93 ◽  
Author(s):  
Henry P. Chapman ◽  
Vincent L. Gaffney ◽  
Helen L. Moulden

The digitisation of museum collections provides great opportunities for broad communication and access. However, currently the majority of online ‘virtual’ museums present information two-dimensionally. Three-dimensional data capture using laser scanning provides the potential to generate 3D virtual objects that can be used for a much greater interactive experience. This paper presents the results of a JISC-funded project aimed at the generation of a 3D online museum of an internationally important collection of Egyptological artefacts that have not previously been publicly available. The results from the project demonstrate the value of 3D museums, in addition to highlighting some of the future possibilities for interaction with objects and the ways in which such virtual museums can revolutionise access to collections for education and public interest. It also stresses ways in which such collections can benefit scholars in terms of reference collections, object analysis and interpretation. The question of objectivity and authenticity of virtual collections, in comparison with real objects is raised.


Sign in / Sign up

Export Citation Format

Share Document