scholarly journals ON THE FUSION OF CAMERA AND LIDAR FOR 3D OBJECT DETECTION AND CLASSIFICATION

Author(s):  
N. Kozonek ◽  
N. Zeller ◽  
H. Bock ◽  
M. Pfeifle

<p><strong>Abstract.</strong> In this paper we present a sensor fusion framework for the detection and classification of objects in autonomous driving applications. The presented method uses a state-of-the-art convolutional neural network (CNN) to detect and classify object from RGB images. The 2D bounding boxes calculated by the CNN are fused with the 3D point cloud measured by Lidar sensors. An accurate sensor cross-calibration is used to map the Lidar points into the image, where they are assigned to the 2D bounding boxes. A one-dimensional K-means algorithm is applied to separate object points from foreground and background and to calculated accurate 3D centroids for all detected objects. The proposed algorithm is tested based on real world data and shows a stable and reliable object detection and centroid estimation in different kind of situations.</p>

2020 ◽  
Vol 34 (07) ◽  
pp. 12557-12564 ◽  
Author(s):  
Zhenbo Xu ◽  
Wei Zhang ◽  
Xiaoqing Ye ◽  
Xiao Tan ◽  
Wei Yang ◽  
...  

3D object detection is an essential task in autonomous driving and robotics. Though great progress has been made, challenges remain in estimating 3D pose for distant and occluded objects. In this paper, we present a novel framework named ZoomNet for stereo imagery-based 3D detection. The pipeline of ZoomNet begins with an ordinary 2D object detection model which is used to obtain pairs of left-right bounding boxes. To further exploit the abundant texture cues in rgb images for more accurate disparity estimation, we introduce a conceptually straight-forward module – adaptive zooming, which simultaneously resizes 2D instance bounding boxes to a unified resolution and adjusts the camera intrinsic parameters accordingly. In this way, we are able to estimate higher-quality disparity maps from the resized box images then construct dense point clouds for both nearby and distant objects. Moreover, we introduce to learn part locations as complementary features to improve the resistance against occlusion and put forward the 3D fitting score to better estimate the 3D detection quality. Extensive experiments on the popular KITTI 3D detection dataset indicate ZoomNet surpasses all previous state-of-the-art methods by large margins (improved by 9.4% on APbv (IoU=0.7) over pseudo-LiDAR). Ablation study also demonstrates that our adaptive zooming strategy brings an improvement of over 10% on AP3d (IoU=0.7). In addition, since the official KITTI benchmark lacks fine-grained annotations like pixel-wise part locations, we also present our KFG dataset by augmenting KITTI with detailed instance-wise annotations including pixel-wise part location, pixel-wise disparity, etc.. Both the KFG dataset and our codes will be publicly available at https://github.com/detectRecog/ZoomNet.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2903
Author(s):  
Razvan Bocu ◽  
Dorin Bocu ◽  
Maksim Iavich

The relatively complex task of detecting 3D objects is essential in the realm of autonomous driving. The related algorithmic processes generally produce an output that consists of a series of 3D bounding boxes that are placed around specific objects of interest. The related scientific literature usually suggests that the data that are generated by different sensors or data acquisition devices are combined in order to work around inherent limitations that are determined by the consideration of singular devices. Nevertheless, there are practical issues that cannot be addressed reliably and efficiently through this strategy, such as the limited field-of-view, and the low-point density of acquired data. This paper reports a contribution that analyzes the possibility of efficiently and effectively using 3D object detection in a cooperative fashion. The evaluation of the described approach is performed through the consideration of driving data that is collected through a partnership with several car manufacturers. Considering their real-world relevance, two driving contexts are analyzed: a roundabout, and a T-junction. The evaluation shows that cooperative perception is able to isolate more than 90% of the 3D entities, as compared to approximately 25% in the case when singular sensing devices are used. The experimental setup that generated the data that this paper describes, and the related 3D object detection system, are currently actively used by the respective car manufacturers’ research groups in order to fine tune and improve their autonomous cars’ driving modules.


2020 ◽  
Vol 100 ◽  
pp. 103955
Author(s):  
Dza-Shiang Hong ◽  
Hung-Hao Chen ◽  
Pei-Yung Hsiao ◽  
Li-Chen Fu ◽  
Siang-Min Siao

2019 ◽  
Vol 9 (24) ◽  
pp. 5397
Author(s):  
Kun Zhao ◽  
Li Liu ◽  
Yu Meng ◽  
Qing Gu

3D object detection has recently become a research hotspot in the field of autonomous driving. Although great progress has been made, it still needs to be further improved. Therefore, this paper presents FDCA, a feature deep continuous aggregation network using multi-sensors for 3D vehicle detection. The proposed network adopts a two-stage structure with the bird’s-eye view (BEV) map and the RGB image as an input. In the first stage, two feature extractors were used to generate feature maps with the high-resolution and representational ability for each input view. These feature maps were then fused and fed to a 3D proposal generator to obtain the reliable 3D vehicle proposals. In the second stage, the refinement network aggregated the features of the proposal regions further and performed classifications, a 3D bounding boxes regression, and orientation estimations to predict the location and heading of vehicles in 3D space. The FDCA network proposed was trained and evaluated on the KITTI 3D object detection benchmark. The experimental results of the validation set illustrated that compared with other fusion-based methods, the 3D average precision (AP) could achieve 76.82% on a moderate setting while having real-time capability, which was higher than that of the second-best performing method by 2.38%. Meanwhile, the results of ablation experiments show that the convergence rate of FDCA was much faster and the stability was also much better, making it a candidate for application in autonomous driving.


2020 ◽  
Vol 12 (11) ◽  
pp. 1895 ◽  
Author(s):  
Jiarong Wang ◽  
Ming Zhu ◽  
Bo Wang ◽  
Deyao Sun ◽  
Hua Wei ◽  
...  

In this paper, we propose a novel 3D object detector KDA3D, which achieves high-precision and robust classification, segmentation, and localization with the help of key-point densification and multi-attention guidance. The proposed end-to-end neural network architecture takes LIDAR point clouds as the main inputs that can be optionally complemented by RGB images. It consists of three parts: part-1 segments 3D foreground points and generates reliable proposals; part-2 (optional) enhances point cloud density and reconstructs the more compact full-point feature map; part-3 refines 3D bounding boxes and adds semantic segmentation as extra supervision. Our designed lightweight point-wise and channel-wise attention modules can adaptively strengthen the “skeleton” and “distinctiveness” point-features to help feature learning networks capture more representative or finer patterns. The proposed key-point densification component can generate pseudo-point clouds containing target information from monocular images through the distance preference strategy and K-means clustering so as to balance the density distribution and enrich sparse features. Extensive experiments on the KITTI and nuScenes 3D object detection benchmarks show that our KDA3D produces state-of-the-art results while running in near real-time with a low memory footprint.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2894
Author(s):  
Minh-Quan Dao ◽  
Vincent Frémont

Multi-Object Tracking (MOT) is an integral part of any autonomous driving pipelines because it produces trajectories of other moving objects in the scene and predicts their future motion. Thanks to the recent advances in 3D object detection enabled by deep learning, track-by-detection has become the dominant paradigm in 3D MOT. In this paradigm, a MOT system is essentially made of an object detector and a data association algorithm which establishes track-to-detection correspondence. While 3D object detection has been actively researched, association algorithms for 3D MOT has settled at bipartite matching formulated as a Linear Assignment Problem (LAP) and solved by the Hungarian algorithm. In this paper, we adapt a two-stage data association method which was successfully applied to image-based tracking to the 3D setting, thus providing an alternative for data association for 3D MOT. Our method outperforms the baseline using one-stage bipartite matching for data association by achieving 0.587 Average Multi-Object Tracking Accuracy (AMOTA) in NuScenes validation set and 0.365 AMOTA (at level 2) in Waymo test set.


2021 ◽  
Vol 11 (13) ◽  
pp. 6016
Author(s):  
Jinsoo Kim ◽  
Jeongho Cho

For autonomous vehicles, it is critical to be aware of the driving environment to avoid collisions and drive safely. The recent evolution of convolutional neural networks has contributed significantly to accelerating the development of object detection techniques that enable autonomous vehicles to handle rapid changes in various driving environments. However, collisions in an autonomous driving environment can still occur due to undetected obstacles and various perception problems, particularly occlusion. Thus, we propose a robust object detection algorithm for environments in which objects are truncated or occluded by employing RGB image and light detection and ranging (LiDAR) bird’s eye view (BEV) representations. This structure combines independent detection results obtained in parallel through “you only look once” networks using an RGB image and a height map converted from the BEV representations of LiDAR’s point cloud data (PCD). The region proposal of an object is determined via non-maximum suppression, which suppresses the bounding boxes of adjacent regions. A performance evaluation of the proposed scheme was performed using the KITTI vision benchmark suite dataset. The results demonstrate the detection accuracy in the case of integration of PCD BEV representations is superior to when only an RGB camera is used. In addition, robustness is improved by significantly enhancing detection accuracy even when the target objects are partially occluded when viewed from the front, which demonstrates that the proposed algorithm outperforms the conventional RGB-based model.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1205
Author(s):  
Zhiyu Wang ◽  
Li Wang ◽  
Bin Dai

Object detection in 3D point clouds is still a challenging task in autonomous driving. Due to the inherent occlusion and density changes of the point cloud, the data distribution of the same object will change dramatically. Especially, the incomplete data with sparsity or occlusion can not represent the complete characteristics of the object. In this paper, we proposed a novel strong–weak feature alignment algorithm between complete and incomplete objects for 3D object detection, which explores the correlations within the data. It is an end-to-end adaptive network that does not require additional data and can be easily applied to other object detection networks. Through a complete object feature extractor, we achieve a robust feature representation of the object. It serves as a guarding feature to help the incomplete object feature generator to generate effective features. The strong–weak feature alignment algorithm reduces the gap between different states of the same object and enhances the ability to represent the incomplete object. The proposed adaptation framework is validated on the KITTI object benchmark and gets about 6% improvement in detection average precision on 3D moderate difficulty compared to the basic model. The results show that our adaptation method improves the detection performance of incomplete 3D objects.


Author(s):  
Xiaozhi Chen ◽  
Kaustav Kundu ◽  
Ziyu Zhang ◽  
Huimin Ma ◽  
Sanja Fidler ◽  
...  

Author(s):  
Xin Zhao ◽  
Zhe Liu ◽  
Ruolan Hu ◽  
Kaiqi Huang

3D object detection plays an important role in a large number of real-world applications. It requires us to estimate the localizations and the orientations of 3D objects in real scenes. In this paper, we present a new network architecture which focuses on utilizing the front view images and frustum point clouds to generate 3D detection results. On the one hand, a PointSIFT module is utilized to improve the performance of 3D segmentation. It can capture the information from different orientations in space and the robustness to different scale shapes. On the other hand, our network obtains the useful features and suppresses the features with less information by a SENet module. This module reweights channel features and estimates the 3D bounding boxes more effectively. Our method is evaluated on both KITTI dataset for outdoor scenes and SUN-RGBD dataset for indoor scenes. The experimental results illustrate that our method achieves better performance than the state-of-the-art methods especially when point clouds are highly sparse.


Sign in / Sign up

Export Citation Format

Share Document