scholarly journals De la fotogrametría a la difusión del patrimonio arqueológico mediante game engines: Menga un caso de estudio

2015 ◽  
Vol 6 (12) ◽  
pp. 58 ◽  
Author(s):  
José L. Caro ◽  
Salvador Hansen

<p>Everyone knows the importance of new technologies and the growth they have had in mobile devices. Today in the field of study and dissemination of cultural heritage (including archaeological), the use of digital 3D models and associated technologies are a tool to increase the registration quality and consequently a better basis for interpretation and dissemination for cultural tourism, education and research. Within this area is gaining positions photogrammetry over other technologies due to its low cost. We can generate 3D models from forografí as through a set of algorithms that are able to obtain very approximate models and very realistic textures. In this paper we propose the use of game-engines to incorporate one element diffusion: the ability to navigate the 3D model realistically. As a case study we use a Menga dolmen that will serve as a study and demonstration of the techniques employed. </p>

Author(s):  
M. Canciani ◽  
E. Conigliaro ◽  
M. Del Grasso ◽  
P. Papalini ◽  
M. Saccone

The development of close-range photogrammetry has produced a lot of new possibility to study cultural heritage. 3D data acquired with conventional and low cost cameras can be used to document, investigate the full appearance, materials and conservation status, to help the restoration process and identify intervention priorities. At the same time, with 3D survey a lot of three-dimensional data are collected and analyzed by researchers, but there are a very few possibility of 3D output. The augmented reality is one of this possible output with a very low cost technology but a very interesting result. Using simple mobile technology (for iPad and Android Tablets) and shareware software (in the case presented “Augment”) it is possible to share and visualize a large number of 3D models with your own device. The case study presented is a part of an architecture graduate thesis, made in Rome at Department of Architecture of Roma Tre University. We have developed a photogrammetric survey to study the Aurelian Wall at Castra Praetoria in Rome. The surveys of 8000 square meters of surface have allowed to identify stratigraphy and construction phases of a complex portion of Aurelian Wall, specially about the Northern door of Castra. During this study, the data coming out of 3D survey (photogrammetric and topographic), are stored and used to create a reverse 3D model, or virtual reconstruction, of the Northern door of Castra. This virtual reconstruction shows the door in the Tiberian period, nowadays it's totally hidden by a curtain wall but, little and significative architectural details allow to know its original feature. The 3D model of the ancient walls has been mapped with the exact type of bricks and mortar, oriented and scaled according to the existing one to use augmented reality. Finally, two kind of application have been developed, one on site, were you can see superimposed the virtual reconstruction on the existing walls using the image recognition. On the other hand, to show the results also during the graduation day, the same application has been created in off-site condition using a poster.


Author(s):  
M. Canciani ◽  
E. Conigliaro ◽  
M. Del Grasso ◽  
P. Papalini ◽  
M. Saccone

The development of close-range photogrammetry has produced a lot of new possibility to study cultural heritage. 3D data acquired with conventional and low cost cameras can be used to document, investigate the full appearance, materials and conservation status, to help the restoration process and identify intervention priorities. At the same time, with 3D survey a lot of three-dimensional data are collected and analyzed by researchers, but there are a very few possibility of 3D output. The augmented reality is one of this possible output with a very low cost technology but a very interesting result. Using simple mobile technology (for iPad and Android Tablets) and shareware software (in the case presented “Augment”) it is possible to share and visualize a large number of 3D models with your own device. The case study presented is a part of an architecture graduate thesis, made in Rome at Department of Architecture of Roma Tre University. We have developed a photogrammetric survey to study the Aurelian Wall at Castra Praetoria in Rome. The surveys of 8000 square meters of surface have allowed to identify stratigraphy and construction phases of a complex portion of Aurelian Wall, specially about the Northern door of Castra. During this study, the data coming out of 3D survey (photogrammetric and topographic), are stored and used to create a reverse 3D model, or virtual reconstruction, of the Northern door of Castra. This virtual reconstruction shows the door in the Tiberian period, nowadays it's totally hidden by a curtain wall but, little and significative architectural details allow to know its original feature. The 3D model of the ancient walls has been mapped with the exact type of bricks and mortar, oriented and scaled according to the existing one to use augmented reality. Finally, two kind of application have been developed, one on site, were you can see superimposed the virtual reconstruction on the existing walls using the image recognition. On the other hand, to show the results also during the graduation day, the same application has been created in off-site condition using a poster.


Author(s):  
A. Cardaci ◽  
A. Versaci ◽  
P. Azzola

Abstract. The creation of three-dimensional models for the cataloguing and documentation of cultural heritage is today an emerging need in the cultural sphere and, above all, for museums. The cultural heritage is still catalogued and documented based on descriptive files assorted of photographic images which, however, fail to outline its spatial richness, possible only through the use of 3D artefacts. The essay aims to propose a methodology of digitalization by low-cost and easy-to-use systems, to be employed even by non-expert survey and photogrammetry’s operators. The case study of the statue of San Nicola da Tolentino, preserved at the Sant’Agostino complex in Bergamo, offered the possibility of a comparison between 3D models acquired with different digitalization tools (professional/action/amateur cameras and smartphone) and processed by several image-based 3D Reconstruction software and methods.


Resources ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 43
Author(s):  
Pavel Hronček ◽  
Bohuslava Gregorová ◽  
Dana Tometzová ◽  
Mário Molokáč ◽  
Ladislav Hvizdák

The study provides a methodology for 3D model processing of historic mining landscape, and its features as mining digital cultural heritage with the possibility of using new visualization means in mining tourism. Historic mining landscapes around the towns of Gelnica (eastern Slovakia) had been chosen for the case study. The underground mining spaces around Gelnica, which are currently inaccessible to clients of mining tourism, were processed using 3D modeling. Historically, correctly processed 3D models of mining spaces enable customers of mining tourism to virtually travel not only in space, but what is most important, in time as well. The up-to-date computer-generated virtual mining heritage in the form of 3D models can be viewed via the Internet from different perspectives and angles. The models created this way are currently the latest trend in developing mining tourism.


Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 424
Author(s):  
Evelyn Gutierrez ◽  
Benjamín Castañeda ◽  
Sylvie Treuillet ◽  
Ivan Hernandez

Along with geometric and color indicators, thermography is another valuable source of information for wound monitoring. The interaction of geometry with thermography can provide predictive indicators of wound evolution; however, existing processes are focused on the use of high-cost devices with a static configuration, which restricts the scanning of large surfaces. In this study, we propose the use of commercial devices, such as mobile devices and portable thermography, to integrate information from different wavelengths onto the surface of a 3D model. A handheld acquisition is proposed in which color images are used to create a 3D model by using Structure from Motion (SfM), and thermography is incorporated into the 3D surface through a pose estimation refinement based on optimizing the temperature correlation between multiple views. Thermal and color 3D models were successfully created for six patients with multiple views from a low-cost commercial device. The results show the successful application of the proposed methodology where thermal mapping on 3D models is not limited in the scanning area and can provide consistent information between multiple thermal camera views. Further work will focus on studying the quantitative metrics obtained by the multi-view 3D models created with the proposed methodology.


2021 ◽  
Vol 13 (23) ◽  
pp. 13020
Author(s):  
Sara Peinado-Santana ◽  
Patricia Hernández-Lamas ◽  
Jorge Bernabéu-Larena ◽  
Beatriz Cabau-Anchuelo ◽  
José Antonio Martín-Caro

This paper describes an innovative, accessible, and sustainable method for enhancing cultural heritage. Documenting and disseminating the public works heritage have now come of age, digitally speaking, with the adoption of new technologies both to further research on and heighten the esteem attributed to the public works heritage. Nonetheless, academic discourse rarely describes procedures for the 3D digitisation of heritage works comprehensible to non-expert readers with limited resources. Taking that premise as a starting point, with special attention to the determinants of the public works heritage, this article aims to define the general, open-source methodology covering 3D model data capture, information processing and optimisation. The article also discusses model dissemination strategies using free platforms and low-cost tools. The general discussion is illustrated with the case study of Ariza Bridge in Spain. This Renaissance-style structure dates from the second half of the sixteenth century. Despite its listing as a cultural heritage asset, the monument was flooded by the Giribaile reservoir waters in 1998 and is now only wholly visible during droughts. The application, developed with open-source software and implemented with free platforms and low-cost tools, features geo-referencing and is designed to be accessible to non-expert users. The methodology proposed is intended as a suitable instrument for the sustainable study, valorisation and dissemination of the built heritage.


Author(s):  
L. Zhang ◽  
F. Wang ◽  
X. Cheng ◽  
C. Li ◽  
H. Lin ◽  
...  

Abstract. 3D documentation and visualization of cultural heritage has a great significance in preserving the memories and history, and supports cultural tourism. It is of great importance to study the 3D reconstruction of cultural relics and historic sites. Preservation, visualization of valuable cultural heritage has always been a difficult challenge. With the developments of photogrammetry, terrestrial laser scanning, 3D models were able to obtained quickly and accurately. In this paper we present the survey and 3D modelling of an ancient temple, Banteay Srei, situated in Angkor, which has long been admired as a “Precious Gem” of Khmer Art for its miniature size of structures and exceptional refinement of the sculptures. The survey was performed with FARO Focus3D 330 and FARO Focus3D 120 terrestrial laser scanners, a micro unmanned aerial vehicle (UAV) (DJI Phantom 4 Pro) and a digital camera (Nikon D90). Once the acquired scans were properly merged, a 3D model was generated from the global point cloud, and plans, sections and elevations were extracted from it for restoration purposes. A short multimedia video was also created for the “Digital Banteay Srei”. In the paper we will discuss all the steps and challenges addressed to provide the 3D model of Banteay Srei Temple.


Author(s):  
L. Cipriani ◽  
S. Bertacchi ◽  
G. Bertacchi

<p><strong>Abstract.</strong> The paper compares two workflows for the achievement of 3D models aimed at in-depth studies on the geometric features of Cultural Heritage artefacts and their dissemination. The purpose is the outlining of pros and cons of different techniques coming from entertainment and video games industry, starting from highly reliable 3D documentation of cultural assets, i.e. architectural/archaeological/urban sites. Two different possible applications are described: (i) procedural modelling used for understanding and visualising reconstruction hypotheses of the vaulted pavilions at Hadrian’s Villa, Tivoli, Rome; (ii) optimisation of 3D high-detailed models, as input files, turned into visual reliable and highly portable assets for game-engines. The first case study is focussed on creating a flexible model for evalueting reconstruction hypotheses and supplying restorers with useful hints for shape completion of ruined pavilions. The second case study makes available detailed digital contents for storytelling historical and cultural events in an attractive way, as in the case of the urban explorative model of Chiuro, a small town in northern Italy.</p>


2021 ◽  
Vol 11 (12) ◽  
pp. 5321
Author(s):  
Marcin Barszcz ◽  
Jerzy Montusiewicz ◽  
Magdalena Paśnikowska-Łukaszuk ◽  
Anna Sałamacha

In the era of the global pandemic caused by the COVID-19 virus, 3D digitisation of selected museum artefacts is becoming more and more frequent practice, but the vast majority is performed by specialised teams. The paper presents the results of comparative studies of 3D digital models of the same museum artefacts from the Silk Road area generated by two completely different technologies: Structure from Motion (SfM)—a method belonging to the so-called low-cost technologies—and by Structured-light 3D Scanning (3D SLS). Moreover, procedural differences in data acquisition and their processing to generate three-dimensional models are presented. Models built using a point cloud were created from data collected in the Afrasiyab museum in Samarkand (Uzbekistan) during “The 1st Scientific Expedition of the Lublin University of Technology to Central Asia” in 2017. Photos for creating 3D models in SfM technology were taken during a virtual expedition carried out under the “3D Digital Silk Road” program in 2021. The obtained results show that the quality of the 3D models generated with SfM differs from the models from the technology (3D SLS), but they may be placed in the galleries of the vitrual museum. The obtained models from SfM do not have information about their size, which means that they are not fully suitable for archiving purposes of cultural heritage, unlike the models from SLS.


Sign in / Sign up

Export Citation Format

Share Document