scholarly journals 3D MODELLING OF THE MAMARI TABLET FROM THE RONGORONGO CORPUS: ACQUISITION, PROCESSING ISSUES, AND OUTCOMES

Author(s):  
L. Lastilla ◽  
R. Ravanelli ◽  
M. Valério ◽  
S. Ferrara

Abstract. Rongorongo is an undeciphered script inscribed on wooden objects from Easter Island (Rapa Nui) in the Pacific Ocean. The existing editions of the inscriptions, and their widespread locations in museums and archives all over the world today constitute a serious obstacle to any objective paleographical assessment. Thus, with a view to a potential decipherment, creating 3D models of the available corpus is of crucial importance, and one of the objectives of the ERC INSCRIBE project, based at the University of Bologna with Professor S. Ferrara as Principal Investigator. In this preliminary work, we present the results of the 3D digitization of the Mamari tablet, one of the longest inscriptions in Rongorongo, housed in the Museum Archives of the Congregazione dei Sacri Cuori di Ges`u e Maria in Rome. The tablet is made of wood, with a shiny reflecting surface, characterized by a mainly dark texture. The 3D modelling was carried out with the ScanRider 1.2 laser scanner manufactured by VGER, based on Structured Light technology, taking care to ensure the legibility of each sign while preserving the overall shape of the object as precisely as possible. To overcome the difficulties inherent in the object’s complex fabric, the Mamari tablet was acquired in separate sections (joined together during processing through specific markers), thus managing to optimize the optical parameters of the laser scanner, such as the exposure of the camera and the depth of field of the projector. Furthermore, an evaluation of the 3D reconstruction precision was also carried out, highlighting a precision of few hundredths of millimeters, in agreement with the claimed nominal standard deviation. In addition to the 3D model produced, one of the main results of this endeavor was the definition of a successful method to scan such complex objects, which will be replicated to finalize the complete 3D modelling of the whole Rongorongo corpus of inscriptions.

2016 ◽  
Vol 2016 (3) ◽  
pp. 233-242 ◽  
Author(s):  
Владислав Колякин ◽  
Vladislav Kolyakin ◽  
Владимир Аверченков ◽  
Vladimir Averchenkov ◽  
Максим Терехов ◽  
...  

Virtual threedimensional (3 D) models of complex objects are used in many fields of science and engineering, such as architecture, industry, medicine, robotics. Besides, 3D models are used in geoinformation systems, computer games, virtual and supplemented reality and so on. Three dimensional models can be formed in dif-ferent ways, one of which consists in 3 D reconstruc-tion. One of the stages of the 3 D reconstruction of complex models of real objects is a definition of the mathematical models of geometric primitives emphasized on the image. One of the ways for the estimate of model parameters is a method of Hough vote and its modifications – Hough probabilistic transformation, Hough random transformation, Hough hierarchical transformation, phase space blurriness, use of a gra-dient of image brightness and so on. As an alternative way for models selection is a choice of suitable points from a set of data.


2018 ◽  
Vol 162 ◽  
pp. 03022 ◽  
Author(s):  
Ahmed Jebur ◽  
Fanar Abed ◽  
Mamoun Mohammed

3D models delivered from digital photogrammetric techniques have massively increased and developed to meet the requirements of many applications. The reliability of these models is basically dependent on the data processing cycle and the adopted tool solution in addition to data quality. Agisoft PhotoScan is a professional image-based 3D modelling software, which seeks to create orderly, precise n 3D content from fixed images. It works with arbitrary images those qualified in both controlled and uncontrolled conditions. Following the recommendations of many users all around the globe, Agisoft PhotoScan, has become an important source to generate precise 3D data for different applications. How reliable is this data for accurate 3D modelling applications is the current question that needs an answer. Therefore; in this paper, the performance of the Agisoft PhotoScan software was assessed and analyzed to show the potential of the software for accurate 3D modelling applications. To investigate this, a study was carried out in the University of Baghdad / Al-Jaderia campus using data collected from airborne metric camera with 457m flying height. The Agisoft results show potential according to the research objective and the dataset quality following statistical and validation shape analysis.


Author(s):  
Pavol Voza´r ◽  
Vladimi´r Sleza´k ◽  
Kamil Krava´rik

This paper deals with advanced 3D computer-aided technologies used for modelling and simulation for decommissioning purposes. Within the A-1 NPP decommissioning process a set of activities is needed to perform successful dismantling and decontamination of rooms and equipment. Optimal process of performance of D&D of underground storage tanks and auxiliary rooms were used on the base of simulation outputs. The mockup tests were performed before using remotely controlled manipulators. The human presence during decontamination and dismantling is case by case excluded due to the radiation safety and ALARA approach. Within Bohunice A-1 Decommissioning Project an advanced computer-aided technologies were/are developed and used. Modelling software packages EUCLID and 3Dipsos together with 3D-laser scanner SOISIC are used for creating of 3D models and also for the verification of as-built state of selected systems and facilities. Software IGRIP is used for computer simulations of all D&D tasks. The 3D modelling and simulation of selected rooms and technological equipment of the A-1 NPP are used consequently in the process of decommissioning preparation and implementation. 3D modelling for the verification and simulation of operating steps is presented in the paper and its contribution to avoiding of collisions and non-optimal interventions into the building and technological parts during performing particular works is evaluated. The application of 3D models for the verification and simulation of operating steps significantly contribute to the optimal planning of D&D procedures. Minimisation of occupation doses of realisation personnel is main reason why the 3D modelling and simulations are used. The paper also presented 3D models of rooms chosen to simulate specific operations (decontamination, handling of radioactive wastes and/or dismantling by remote controlled manipulators) without risk accident, high dose rates of personnel etc. Process of selection of optimal operating procedure for decontamination and dismantling is presented as well as achieved experiences and recommendations for further work.


Author(s):  
A. Meschini ◽  
E. Petrucci ◽  
D. Rossi ◽  
F. Sicuranza

The paper aims at presenting some results of a point cloud-based survey carried out through integrated methodologies based on active and passive 3D acquisition techniques for processing 3D models. This experiment is part of a research project still in progress conducted by an interdisciplinary team from the School of Architecture and Design of Ascoli Piceno and funded by the University of Camerino. We describe an experimentation conducted on the convent of San Francesco located in Monterubbiano town center (Marche, Italy). The whole complex has undergone a number of substantial changes since the year of its foundation in 1247. The survey was based on an approach blending range-based 3D data acquired by a TOF laser scanner and image-based 3D acquired using an UAV equipped with digital camera in order to survey some external parts difficult to reach with TLS. The integration of two acquisition methods aimed to define a workflow suitable to process dense 3D models from which to generate high poly and low poly 3D models useful to describe complex architectures for different purposes such as photorealistic representations, historical documentation, risk assessment analyses based on Finite Element Methods (FEM).


Author(s):  
G. Vacca ◽  
G. Furfaro ◽  
A. Dessì

<p><strong>Abstract.</strong> The growing interest in recent years in Unmanned Aerial Vehicles (UAVs) by the scientific community, software developers, and geomatics professionals, has led these systems to be used more and more widely, in different fields of engineering and architecture. This is thanks, above all, to their flexibility of use and low cost compared to traditional photogrammetric flights using expensive metric digital cameras or LiDAR sensors. In recent years, UAVs have also been used in the field of monitoring and inspection of public or private buildings that are remarkable in terms of size and architecture. This is mainly due to the focus a sustainability and resource efficiency in the building and infrastructure sector, which aims to extend their lifetimes. Through the use of remote checking using UAVs, the monitoring and inspection of buildings can be brought to a new level of quality and saving.</p><p> This paper focuses on the processing and study of 3D models obtained from images captured by an UAV. In particular, the authors wanted to study the accuracy gains achieved in the building 3D model obtained with both nadir and oblique UAV flights. The images from the flights were processed using Structure-for Motion-based approach for point cloud generation using dense image-matching algorithms implemented in an open source software. We used the open source software VisualSfM, developed by Chanchang Wu in collaboration with the University of Washington and Google. The dense matching plug-in integrated in its interface, PMVS/CMVS, made by Yasutaka Furukawa, was employed to generate the dense cloud. The achieved results were compare with those gained by Photoscan software by Agisoft and with 3D model from the Terrestrial Laser Scanner (TLS) survey.</p>


Heritage ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 1835-1851 ◽  
Author(s):  
Hafizur Rahaman ◽  
Erik Champion

The 3D reconstruction of real-world heritage objects using either a laser scanner or 3D modelling software is typically expensive and requires a high level of expertise. Image-based 3D modelling software, on the other hand, offers a cheaper alternative, which can handle this task with relative ease. There also exists free and open source (FOSS) software, with the potential to deliver quality data for heritage documentation purposes. However, contemporary academic discourse seldom presents survey-based feature lists or a critical inspection of potential production pipelines, nor typically provides direction and guidance for non-experts who are interested in learning, developing and sharing 3D content on a restricted budget. To address the above issues, a set of FOSS were studied based on their offered features, workflow, 3D processing time and accuracy. Two datasets have been used to compare and evaluate the FOSS applications based on the point clouds they produced. The average deviation to ground truth data produced by a commercial software application (Metashape, formerly called PhotoScan) was used and measured with CloudCompare software. 3D reconstructions generated from FOSS produce promising results, with significant accuracy, and are easy to use. We believe this investigation will help non-expert users to understand the photogrammetry and select the most suitable software for producing image-based 3D models at low cost for visualisation and presentation purposes.


2020 ◽  
Vol 19 ◽  
pp. 59-71
Author(s):  
Nicholas Batakanwa ◽  
Tomasz Lipecki

The article presents the possibilities of using a video camera to create a 3D metric model of engineering objects using Agisoft and CloudCompare software. Traditional photogrammetry technique does not always match up with production urgency needed by the market. Complexity is seen when used in huge objects leading to rise of cost, time and tediousness of the work. The use of Video Camera technique here termed as videogrammetry technique is comparable to taking pictures, however, it allows to speed up the process of obtaining data, which in many cases is a key element in anyb any project or research. The analysis of the quality of 3D modelling of the three filmed objects was performed, which allowed the authors to refine the procedure for acquiring images for spatial analyses. The applied technique of “videogrammetry” is comparable to taking pictures, but allows the data acquisition process to speed up, which in many cases is a key element in field research. 3D objects videos from no-metric camera were processed by Agisoft Metashape. To be able to assess the accuracy of the videogrammetry data, a well-established Laser scanner technique’s data was used for comparison. The laser scanner data were pre-processed in Autodesk Recap. Manual registration was performed utilizing 14 points from the three scans. The two 3D models were exported to CloudCompare software for comparison and further analysis. An analysis of the quality of 3D modelling of the three objects filmed was performed, which allowed refining the procedure for obtaining images for spatial analysis. The article presents the possibilities of using a non-metric mobile phone video camera “videogrammetry” to create a metric 3D model of engineering objects using Agisoft and CloudCompare software. In CloudCompare a registration, cloud to cloud (C2C) and profile to profile analysis was performed to determine the uncertainty of the 3D model produced from videogrammetry data determined as distance of separation between the two models. Results show average distance of separation between laser scanner and videogrammetry derived 3D model point cloud to be 34cm, the average profile separation was 25 cm in XY plane and 1.9 cm in Z-plane. Using Cloud to Cloud PCV the average difference of 84 cm was determined.


Author(s):  
A. Bosco ◽  
E. Canna ◽  
L. Carpentiero ◽  
A. D’Andrea ◽  
F. Forte ◽  
...  

Abstract. Advanced and low-cost 3D technologies (Laser Scanner and Digital Photogrammetry) are nowadays widely used in several fields such as Cultural Heritage and Archaeology. In this paper a collaborative project between the Archaeological Park of Herculaneum, the CISA (Interdepartmental Services Centre for Archaeology) and the DAAM (Department of Asia, Africa and Mediterranean Studies) of the University “L’Orientale” of Naples is presented. Aim of the project was to find a solution to study the Roman boat discovered in the ancient city of Herculaneum and destroyed by the eruption of Vesuvius in 79 A.D., without altering its state of preservation. Different digital survey techniques were employed to compare different types of sensors. The goal was to obtain an accurate definition of the construction characteristics of the boat thanks to the data fusion.


Author(s):  
S. Pratali Maffei ◽  
E. Canevese ◽  
T. De Gottardo

<p><strong>Abstract.</strong> The twenty-year and interdisciplinary research activity carried out by Virtualgeo has focused on the development of new methods and tools for 3D modeling that go beyond the simple digital-virtual reconstruction of solid modelling, in order to realize three-dimensional informative and photogrammetric representations that faithfully reproduce reality. These so called Advanced 3D models are the basis for carrying out metrological investigations to support the design and the BIM database population. In particular, in this paper we will deal with the segmentation tool, which allows the classification of the photogrammetric 3D model (material, degradation and chronological features). In detail, we will illustrate the collaboration experience between Virtualgeo and the University of Trieste, course in Technologies for the conservation and enhancement of architectural heritage of the Master's Degree in Architecture. The experience focused on the study of the archaeological site of the Roman river port of Aquileia, which Advanced 3D model was supplied by Virtualgeo. Firstly, the work focused on the informative contents necessary for the subsequent elaborations (different types of materials, alteration/degradation forms), starting from the use of coded lexicons (UNI 11182/2006). Subsequently, the quantitative data were associated to each category of homogeneous elements, obtainable from the segmentation (“mapping”) of the 3D model. This experience gave the chance to test the EasyCUBE PRO software: it was gradually adapted to the specific needs emerged both during the analysis of the site and the definition of conservation interventions, so as the outputs that can be generated after the elaboration of the Advanced 3D model.</p>


Author(s):  
A. Scianna ◽  
G. F. Gaglio ◽  
M. La Guardia

Abstract. The world of valorization of Cultural Heritage is even more focused on the virtual representation and reconstructions of digital 3D models of monuments and archaeological sites. In this scenario the quality and the performances offered by the virtual reality (VR) and augmented reality (AR) navigation take primary importance, improving the accessibility of cultural sites where the real access is not allowed for natural conditions or human possibilities. The creation of a virtual environment useful for these purposes requires a specific workflow to follow, combining different strategies in the fields of survey, 3D modelling and virtual navigation. In this work a specific case of study has been analyzed as a practical example, the church of ‘San Giorgio dei Genovesi’, settled in the Historic Centre of Palermo (Italy). The acquisition of geometric information has been obtained with the integration of Terrestrial Laser Scanner (TLS) technologies and the photogrammetric reconstruction from mini Unmanned Aerial Vehicle (UAV) equipment. The obtained point cloud has been georeferred considering a network of Ground Control Points (GCP) acquired by a Global Navigation Satellite System (GNSS) receiver. The final point cloud has been processed and properly simplified through 3D modelling procedures, to obtain a realistic and light 3D model reconstruction. The model has hence employed into a VR WEB navigation system and will be used for AR outdoor application in the future, allowing to obtain different solutions for empowering the accessibility of the cultural good. The strategy of 3D CH model reconstruction, followed in this work, could be considered a reference methodology for the development of VR gaming applications finalized to CH valorization and AR applications, applied to museums or touristic paths in historical centres.


Sign in / Sign up

Export Citation Format

Share Document