scholarly journals GAIT RECOGNITION BASED ON CONVOLUTIONAL NEURAL NETWORKS

Author(s):  
A. Sokolova ◽  
A. Konushin

In this work we investigate the problem of people recognition by their gait. For this task, we implement deep learning approach using the optical flow as the main source of motion information and combine neural feature extraction with the additional embedding of descriptors for representation improvement. In order to find the best heuristics, we compare several deep neural network architectures, learning and classification strategies. The experiments were made on two popular datasets for gait recognition, so we investigate their advantages and disadvantages and the transferability of considered methods.

Author(s):  
Dr. Abul Bashar

The deep learning being a subcategory of the machine learning follows the human instincts of learning by example to produce accurate results. The deep learning performs training to the computer frame work to directly classify the tasks from the documents available either in the form of the text, image, or the sound. Most often the deep learning utilizes the neural network to perform the accurate classification and is referred as the deep neural networks; one of the most common deep neural networks used in a broader range of applications is the convolution neural network that provides an automated way of feature extraction by learning the features directly from the images or the text unlike the machine learning that extracts the features manually. This enables the deep learning neural networks to have a state of art accuracy that mostly expels even the human performance. So the paper is to present the survey on the deep learning neural network architectures utilized in various applications for having an accurate classification with an automated feature extraction.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


Author(s):  
Ankita Singh ◽  
◽  
Pawan Singh

The Classification of images is a paramount topic in artificial vision systems which have drawn a notable amount of interest over the past years. This field aims to classify an image, which is an input, based on its visual content. Currently, most people relied on hand-crafted features to describe an image in a particular way. Then, using classifiers that are learnable, such as random forest, and decision tree was applied to the extract features to come to a final decision. The problem arises when large numbers of photos are concerned. It becomes a too difficult problem to find features from them. This is one of the reasons that the deep neural network model has been introduced. Owing to the existence of Deep learning, it can become feasible to represent the hierarchical nature of features using a various number of layers and corresponding weight with them. The existing image classification methods have been gradually applied in real-world problems, but then there are various problems in its application processes, such as unsatisfactory effect and extremely low classification accuracy or then and weak adaptive ability. Models using deep learning concepts have robust learning ability, which combines the feature extraction and the process of classification into a whole which then completes an image classification task, which can improve the image classification accuracy effectively. Convolutional Neural Networks are a powerful deep neural network technique. These networks preserve the spatial structure of a problem and were built for object recognition tasks such as classifying an image into respective classes. Neural networks are much known because people are getting a state-of-the-art outcome on complex computer vision and natural language processing tasks. Convolutional neural networks have been extensively used.


Ingenius ◽  
2021 ◽  
Author(s):  
Lucas C. Lampier ◽  
Yves L. Coelho ◽  
Eliete M. O. Caldeira ◽  
Teodiano Bastos-Filho

This article describes the methodology used to train and test a Deep Neural Network (DNN) with Photoplethysmography (PPG) data performing a regression task to estimate the Respiratory Rate (RR). The DNN architecture is based on a model used to infer the heart rate (HR) from noisy PPG signals, which is optimized to the RR problem using genetic optimization. Two open-access datasets were used in the tests, the BIDMC and the CapnoBase. With the CapnoBase dataset, the DNN achieved a median error of 1.16 breaths/min, which is comparable with analytical methods in the literature, in which the best error found is 1.1 breaths/min (excluding the 8 % noisiest data). The BIDMC dataset seems to be more challenging, as the minimum median error of the literature’s methods is 2.3 breaths/min (excluding 6 % of the noisiest data), and the DNN based approach achieved a median error of 1.52 breaths/min with the whole dataset.


Author(s):  
Huixin Yang ◽  
Xiang Li ◽  
Wei Zhang

Abstract Despite the rapid development of deep learning-based intelligent fault diagnosis methods on rotating machinery, the data-driven approach generally remains a "black box" to researchers, and its internal mechanism has not been sufficiently understood. The weak interpretability significantly impedes further development and applications of the effective deep neural network-based methods. This paper contributes efforts to understanding the mechanical signal processing of deep learning on the fault diagnosis problems. The diagnostic knowledge learned by the deep neural network is visualized using the neuron activation maximization and the saliency map methods. The discriminative features of different machine health conditions are intuitively observed. The relationship between the data-driven methods and the well-established conventional fault diagnosis knowledge is confirmed by the experimental investigations on two datasets. The results of this study can benefit researchers on understanding the complex neural networks, and increase the reliability of the data-driven fault diagnosis model in the real engineering cases.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1606
Author(s):  
Daniela Onita ◽  
Adriana Birlutiu ◽  
Liviu P. Dinu

Images and text represent types of content that are used together for conveying a message. The process of mapping images to text can provide very useful information and can be included in many applications from the medical domain, applications for blind people, social networking, etc. In this paper, we investigate an approach for mapping images to text using a Kernel Ridge Regression model. We considered two types of features: simple RGB pixel-value features and image features extracted with deep-learning approaches. We investigated several neural network architectures for image feature extraction: VGG16, Inception V3, ResNet50, Xception. The experimental evaluation was performed on three data sets from different domains. The texts associated with images represent objective descriptions for two of the three data sets and subjective descriptions for the other data set. The experimental results show that the more complex deep-learning approaches that were used for feature extraction perform better than simple RGB pixel-value approaches. Moreover, the ResNet50 network architecture performs best in comparison to the other three deep network architectures considered for extracting image features. The model error obtained using the ResNet50 network is less by approx. 0.30 than other neural network architectures. We extracted natural language descriptors of images and we made a comparison between original and generated descriptive words. Furthermore, we investigated if there is a difference in performance between the type of text associated with the images: subjective or objective. The proposed model generated more similar descriptions to the original ones for the data set containing objective descriptions whose vocabulary is simpler, bigger and clearer.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Tianyu Wang ◽  
Shi-Yuan Ma ◽  
Logan G. Wright ◽  
Tatsuhiro Onodera ◽  
Brian C. Richard ◽  
...  

AbstractDeep learning has become a widespread tool in both science and industry. However, continued progress is hampered by the rapid growth in energy costs of ever-larger deep neural networks. Optical neural networks provide a potential means to solve the energy-cost problem faced by deep learning. Here, we experimentally demonstrate an optical neural network based on optical dot products that achieves 99% accuracy on handwritten-digit classification using ~3.1 detected photons per weight multiplication and ~90% accuracy using ~0.66 photons (~2.5 × 10−19 J of optical energy) per weight multiplication. The fundamental principle enabling our sub-photon-per-multiplication demonstration—noise reduction from the accumulation of scalar multiplications in dot-product sums—is applicable to many different optical-neural-network architectures. Our work shows that optical neural networks can achieve accurate results using extremely low optical energies.


2021 ◽  
Vol 507 (3) ◽  
pp. 4061-4073
Author(s):  
Thorben Finke ◽  
Michael Krämer ◽  
Silvia Manconi

ABSTRACT Despite the growing number of gamma-ray sources detected by the Fermi-Large Area Telescope (LAT), about one-third of the sources in each survey remains of uncertain type. We present a new deep neural network approach for the classification of unidentified or unassociated gamma-ray sources in the last release of the Fermi-LAT catalogue (4FGL-DR2) obtained with 10 yr of data. In contrast to previous work, our method directly uses the measurements of the photon energy spectrum and time series as input for the classification, instead of specific, human-crafted features. Dense neural networks, and for the first time in the context of gamma-ray source classification recurrent neural networks, are studied in depth. We focus on the separation between extragalactic sources, i.e. active galactic nuclei, and Galactic pulsars, and on the further classification of pulsars into young and millisecond pulsars. Our neural network architectures provide powerful classifiers, with a performance that is comparable to previous analyses based on human-crafted features. Our benchmark neural network predicts that of the sources of uncertain type in the 4FGL-DR2 catalogue, 1050 are active galactic nuclei and 78 are Galactic pulsars, with both classes following the expected sky distribution and the clustering in the variability–curvature plane. We investigate the problem of sample selection bias by testing our architectures against a cross-match test data set using an older catalogue, and propose a feature selection algorithm using autoencoders. Our list of high-confidence candidate sources labelled by the neural networks provides a set of targets for further multiwavelength observations addressed to identify their nature. The deep neural network architectures we develop can be easily extended to include specific features, as well as multiwavelength data on the source photon energy and time spectra coming from different instruments.


2019 ◽  
Author(s):  
Léon-Charles Tranchevent ◽  
Francisco Azuaje ◽  
Jagath C. Rajapakse

AbstractThe availability of high-throughput omics datasets from large patient cohorts has allowed the development of methods that aim at predicting patient clinical outcomes, such as survival and disease recurrence. Such methods are also important to better understand the biological mechanisms underlying disease etiology and development, as well as treatment responses. Recently, different predictive models, relying on distinct algorithms (including Support Vector Machines and Random Forests) have been investigated. In this context, deep learning strategies are of special interest due to their demonstrated superior performance over a wide range of problems and datasets. One of the main challenges of such strategies is the “small n large p” problem. Indeed, omics datasets typically consist of small numbers of samples and large numbers of features relative to typical deep learning datasets. Neural networks usually tackle this problem through feature selection or by including additional constraints during the learning process.We propose to tackle this problem with a novel strategy that relies on a graph-based method for feature extraction, coupled with a deep neural network for clinical outcome prediction. The omics data are first represented as graphs whose nodes represent patients, and edges represent correlations between the patients’ omics profiles. Topological features, such as centralities, are then extracted from these graphs for every node. Lastly, these features are used as input to train and test various classifiers.We apply this strategy to four neuroblastoma datasets and observe that models based on neural networks are more accurate than state of the art models (DNN: 85%-87%, SVM/RF: 75%-82%). We explore how different parameters and configurations are selected in order to overcome the effects of the small data problem as well as the curse of dimensionality. Our results indicate that the deep neural networks capture complex features in the data that help predicting patient clinical outcomes.


Author(s):  
Dong-Dong Chen ◽  
Wei Wang ◽  
Wei Gao ◽  
Zhi-Hua Zhou

Deep neural networks have witnessed great successes in various real applications, but it requires a large number of labeled data for training. In this paper, we propose tri-net, a deep neural network which is able to use massive unlabeled data to help learning with limited labeled data. We consider model initialization, diversity augmentation and pseudo-label editing simultaneously. In our work, we utilize output smearing to initialize modules, use fine-tuning on labeled data to augment diversity and eliminate unstable pseudo-labels to alleviate the influence of suspicious pseudo-labeled data. Experiments show that our method achieves the best performance in comparison with state-of-the-art semi-supervised deep learning methods. In particular, it achieves 8.30% error rate on CIFAR-10 by using only 4000 labeled examples.


Sign in / Sign up

Export Citation Format

Share Document