scholarly journals SURFACE DEFORMATION MONITORING IN PERMAFROST REGIONS OF TIBETAN PLATEAU BASED ON ALOS PALSAR DATA

Author(s):  
L. M. Chen ◽  
G. Qiao ◽  
P. Lu

The permafrost region of Qinghai-Tibet Plateau is widely distributed with the freeze/thaw processes that cause surface structural damage. The differential interferometry synthetic aperture radar (DInSAR) can detect large scale surface deformation with high precision, thus can be used to monitor the freeze/thaw processes of frozen soil area. In this paper, the surface deformation pattern of Qinghai-Tibet railway was analyzed by using the PALSAR 1.0 raw data of the ALOS satellite (L band) and 90m resolution SRTM DEM data, with the help of two-pass DInSAR method in GAMMA software, and the differential interferograms and deformation maps were obtained accordingly. Besides, the influence of temperature, topography and other factors on deformation of frozen soil were also studied. The following conclusions were obtained: there is a negative correlation between deformation and temperature, and there is a delay between the deformation change and that of temperature; deformation and elevation are positively correlated; the permafrost deformation is also affected by solar radiation that could form variable amplitude variation.

2021 ◽  
Vol 13 (23) ◽  
pp. 4744
Author(s):  
Jing Wang ◽  
Chao Wang ◽  
Hong Zhang ◽  
Yixian Tang ◽  
Wei Duan ◽  
...  

The Qinghai-Tibet Railway (QTR) is the railway with the highest elevation and longest distance in the world, spanning more than 1142 km from Golmud to Lhasa across the continuous permafrost region. Due to climate change and anthropogenic activities, geological disasters such as subsidence and thermal melt collapse have occurred in the QTR embankment. To conduct the large-scale permafrost monitoring and geohazard investigation along the QTR, we collected 585 Sentinel-1A images based on the composite index model using the multitrack time-series interferometry synthetic aperture radar (MTS-InSAR) method to retrieve the surface deformation over a 3.15 × 105 km2 area along the QTR. Meanwhile, a new method for permafrost distribution mapping based on InSAR time series deformation was proposed. Finally, the seasonal deformation map and a new map of permafrost distribution along the QTR from Golmud to Lhasa were obtained. The results showed that the estimated seasonal deformation range of the 10 km buffer zone along the QTR was −50–10 mm, and the LOS deformation rate ranged from −30 to 15 mm/yr. In addition, the deformation results were validated by leveling measurements, and the range of absolute error was between 0.1 and 4.62 mm. Most of the QTR was relatively stable. Some geohazard-prone sections were detected and analyzed along the QTR. The permafrost distribution results were mostly consistent with the simulated results of Zou’s method, based on the temperature at the top of permafrost (TTOP) model. This study reveals recent deformation characteristics of the QTR, and has significant scientific implications and applicational value for ensuring the safe operation of the QTR. Moreover, our method, based on InSAR results, provides new insights for permafrost classification on the Qinghai-Tibet Plateau (QTP).


2021 ◽  
Vol 233 ◽  
pp. 01149
Author(s):  
Ying Yang ◽  
Yifang Sun ◽  
Shihong Wu ◽  
Xuegang Dong ◽  
Hanyao Huang ◽  
...  

It is difficult to monitor the surface deformation along the expressway for the critical climate conditions in Tibet plateau. In this paper, based on sentinel-1A SAR data, the surface deformation along the Gongyu expressway was tried to evaluate using time-series SBAS-InSAR method. The results indicate that the surface deformation in most regions is within the safe acquirement of the expressway. Moreover, the surface deformation indicates a strong seasonal effect. Finally, two special spots with dangerous surface deformation are identified along the expressway.


2019 ◽  
Author(s):  
Junfeng Wang ◽  
Qingbai Wu ◽  
Ziqiang Yuan ◽  
Hojeong Kang

Abstract. Freezing and thawing action of the active layer plays a significant role in soil respiration (Rs) in permafrost regions. However, little is known about how the freeze-thaw process regulates the Rs dynamics in different stages for the alpine meadow underlain by permafrost on the Qinghai-Tibet Plateau (QTP). We conducted continuous in-situ measurements of Rs and freeze-thaw process of the active layer at an alpine meadow site in the Beiluhe permafrost region of QTP to determine the regulatory mechanisms of the different freeze-thaw stages of the active layer on the Rs. We found that the freezing and thawing process of active layer modified the Rs dynamics differently in different freeze-thaw stages. The mean Rs ranged from 0.56 to 1.75 μmol/m2s across the stages, with the lowest value in the SW stage and highest value in the ST stage; and Q10 among the different freeze-thaw stages changed greatly, with maximum (4.9) in the WC stage and minimum (1.7) in the SW stage. Patterns of Rs among the ST, AF, WC, and SW stages differed, and the corresponding contribution percentages of cumulative Rs to annual total Rs were 61.54, 8.89, 18.35, and 11.2 %, respectively. Soil temperature (Ts) was the most important driver of Rs regardless of soil water status in all stages. Our results suggest that as the climate warming and permafrost degradation continue, great changes in freeze-thaw process patterns may trigger more Rs emissions from this ecosystem because of prolonged ST stage.


2020 ◽  
Vol 14 (9) ◽  
pp. 2835-2848
Author(s):  
Junfeng Wang ◽  
Qingbai Wu ◽  
Ziqiang Yuan ◽  
Hojeong Kang

Abstract. Freezing and thawing action of the active layer plays a significant role in soil respiration (Rs) in permafrost regions. However, little is known about how the freeze–thaw processes affect the Rs dynamics in different stages of the alpine meadow underlain by permafrost in the Qinghai–Tibet Plateau (QTP). We conducted continuous in situ measurements of Rs and freeze–thaw processes of the active layer at an alpine meadow site in the Beiluhe permafrost region of the QTP and divided the freeze–thaw processes into four different stages in a complete freeze–thaw cycle, comprising the summer thawing (ST) stage, autumn freezing (AF) stage, winter cooling (WC) stage, and spring warming (SW) stage. We found that the freeze–thaw processes have various effects on the Rs dynamics in different freeze–thaw stages. The mean Rs ranged from 0.12 to 3.18 µmol m−2 s−1 across the stages, with the lowest value in WC and highest value in ST. Q10 among the different freeze–thaw stages changed greatly, with the maximum (4.91±0.35) in WC and minimum (0.33±0.21) in AF. Patterns of Rs among the ST, AF, WC, and SW stages differed, and the corresponding contribution percentages of cumulative Rs to total Rs of a complete freeze–thaw cycle (1692.98±51.43 g CO2 m−2) were 61.32±0.32 %, 8.89±0.18 %, 18.43±0.11 %, and 11.29±0.11 %, respectively. Soil temperature (Ts) was the most important driver of Rs regardless of soil water status in all stages. Our results suggest that as climate change and permafrost degradation continue, great changes in freeze–thaw process patterns may trigger more Rs emissions from this ecosystem because of a prolonged ST stage.


Author(s):  
R. Dwivedi ◽  
A. B. Narayan ◽  
A. Tiwari ◽  
O. Dikshit ◽  
A. K. Singh

In the past few years, SAR Interferometry specially InSAR and D-InSAR were extensively used for deformation monitoring related applications. Due to temporal and spatial decorrelation in dense vegetated areas, effectiveness of InSAR and D-InSAR observations were always under scrutiny. Multi-temporal InSAR methods are developed in recent times to retrieve the deformation signal from pixels with different scattering characteristics. Presently, two classes of multi-temporal InSAR algorithms are available- Persistent Scatterer (PS) and Small Baseline (SB) methods. This paper discusses the Stanford Method for Persistent Scatterer (StaMPS) based PS-InSAR and the Small Baselines Subset (SBAS) techniques to estimate the surface deformation in Tehri dam reservoir region in Uttarkhand, India. Both PS-InSAR and SBAS approaches used sixteen ENVISAT ASAR C-Band images for generating single master and multiple master interferograms stack respectively and their StaMPS processing resulted in time series 1D-Line of Sight (LOS) mean velocity maps which are indicative of deformation in terms of movement towards and away from the satellites. From 1D LOS velocity maps, localization of landslide is evident along the reservoir rim area which was also investigated in the previous studies. Both PS-InSAR and SBAS effectively extract measurement pixels in the study region, and the general results provided by both approaches show a similar deformation pattern along the Tehri reservoir region. Further, we conclude that StaMPS based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean Line of Sight (LOS) velocity as compared to SBAS method. It is also proposed to take up a few major landslides area in Uttarakhand for slope stability assessment.


2009 ◽  
Vol 13 (3) ◽  
pp. 327-341 ◽  
Author(s):  
W. Genxu ◽  
H. Hongchang ◽  
L. Guangsheng ◽  
L. Na

Abstract. Alpine meadow is one of the most widespread grassland types in the permafrost regions of the Qinghai-Tibet Plateau, and the transmission of coupled soil water heat is one of the most crucial processes influencing cyclic variations in the hydrology of frozen soil regions, especially under different vegetation covers. The present study assesses the impact of changes in vegetation cover on the coupling of soil water and heat in a permafrost region. Soil moisture (θv), soil temperature (Ts), soil heat content, and differences in θv−Ts coupling were monitored on a seasonal and daily basis under three different vegetation covers (30, 65, and 93%) on both thawed and frozen soils. Regression analysis of θv vs. Ts plots under different levels of vegetation cover indicates that soil freeze-thaw processes were significantly affected by the changes in vegetation cover. The decrease in vegetation cover of an alpine meadow reduced the difference between air temperature and ground temperature (ΔTa−s), and it also resulted in a decrease in Ts at which soil froze, and an increase in the temperature at which it thawed. This was reflected in a greater response of soil temperature to changes in air temperature (Ta). For ΔTa−s outside the range of −0.1 to 1.0°C, root zone soil-water temperatures showed a significant increase with increasing ΔTa−s; however, the magnitude of this relationship was dampened with increasing vegetation cover. At the time of maximum water content in the thawing season, the soil temperature decreased with increasing vegetation. Changes in vegetation cover also led to variations in θv−Ts coupling. With the increase in vegetation cover, the surface heat flux decreased. Soil heat storage at 20 cm in depth increased with increasing vegetation cover, and the heat flux that was downwardly transmitted decreased. The soil property varied greatly under different vegetation covers, causing the variation of heat conductivity and water-heat hold capacity in topsoil layer in different vegetation cover. The variation of heat budget and transmitting in soil is the main factor that causes changes in soil thawing and freezing processes, and θv−Ts coupling relationship under different vegetation fractions. In addition to providing insulation against soil warming, vegetation in alpine meadows within the permafrost region also would slow down the response of permafrost to climatic warming via the greater water-holding capacity of its root zone. Such vegetation may therefore play an important role in conserving water in alpine meadows and maintaining the stability of engineering works constructed within frozen soil of the Qinghai-Tibet Plateau.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jiaxu Jin ◽  
Shiwang Li ◽  
Chenguang Song ◽  
Xinlei Zhang ◽  
Xiangfeng Lv

Abstract The freeze-thaw cycle is one of the important factors in inducing a dam-break in the permafrost region, so it is of great practical significance to study the mechanism of the failure deformation of tailings dams under freeze-thaw cycles. In this paper, the water-heat-force coupling model of a tailings dam considering frost-thaw damage is established, and the freeze-thaw cyclic ageing deformation of a tailings dam in a seasonally frozen soil area is studied. The correctness of the model is validated by numerical calculation. The research shows under the same water content, the compressive strength and modulus of deformation decrease with an increase in the number of freeze-thaw cycles, the cohesion and internal friction angle decrease, and the amplitude gradually decreases before becoming stable. In the process of cooling, the pore water pressure first increases and then decreases, and the pore water pressure first decreases and then increases during the heating process. The research results can provide a theoretical basis and reference values for the stability analysis of tailings dams in seasonally frozen soil areas.


2012 ◽  
Vol 226-228 ◽  
pp. 1651-1654 ◽  
Author(s):  
Qu Lin Tan ◽  
Chou Xie

Under inclement Qinghai-Tibet plateau environment, monitoring and analysis of railway subgrade deformation in plateau permafrost region has very important engineering significance for stability evaluation and safety management. In the paper, satellite interferometry was applied to measure subgrade deformation in the Beiluhe test site along the Qinghai-Tibet railway with gathered satellite interferometric SAR images. Based on the satellite-interferometry-derived data, the deformation characteristics of six points in different permafrost subgrades (the sliced rock embankment, the crushed rock embankment and railway bridge) along the Qinghai-Tibet railway were analyzed and compared. The analysis results show that settlement is the main behavior of railway subgrade deformation and the deformation amount of railway bridge is less than the sliced or the crushed rock embankment along the Qinghai-Tibet railway in permafrost regions.


Author(s):  
R. Dwivedi ◽  
A. B. Narayan ◽  
A. Tiwari ◽  
O. Dikshit ◽  
A. K. Singh

In the past few years, SAR Interferometry specially InSAR and D-InSAR were extensively used for deformation monitoring related applications. Due to temporal and spatial decorrelation in dense vegetated areas, effectiveness of InSAR and D-InSAR observations were always under scrutiny. Multi-temporal InSAR methods are developed in recent times to retrieve the deformation signal from pixels with different scattering characteristics. Presently, two classes of multi-temporal InSAR algorithms are available- Persistent Scatterer (PS) and Small Baseline (SB) methods. This paper discusses the Stanford Method for Persistent Scatterer (StaMPS) based PS-InSAR and the Small Baselines Subset (SBAS) techniques to estimate the surface deformation in Tehri dam reservoir region in Uttarkhand, India. Both PS-InSAR and SBAS approaches used sixteen ENVISAT ASAR C-Band images for generating single master and multiple master interferograms stack respectively and their StaMPS processing resulted in time series 1D-Line of Sight (LOS) mean velocity maps which are indicative of deformation in terms of movement towards and away from the satellites. From 1D LOS velocity maps, localization of landslide is evident along the reservoir rim area which was also investigated in the previous studies. Both PS-InSAR and SBAS effectively extract measurement pixels in the study region, and the general results provided by both approaches show a similar deformation pattern along the Tehri reservoir region. Further, we conclude that StaMPS based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean Line of Sight (LOS) velocity as compared to SBAS method. It is also proposed to take up a few major landslides area in Uttarakhand for slope stability assessment.


Sign in / Sign up

Export Citation Format

Share Document