scholarly journals SPATIO-TEMPORAL PROCESS SIMULATION OF DAM-BREAK FLOOD BASED ON SPH

Author(s):  
H. Wang ◽  
F. Ye ◽  
S. Ouyang ◽  
Z. Li

On the basis of introducing the SPH (Smooth Particle Hydrodynamics) simulation method, the key research problems were given solutions in this paper, which ere the spatial scale and temporal scale adapting to the GIS(Geographical Information System) application, the boundary condition equations combined with the underlying surface, and the kernel function and parameters applicable to dam-break flood simulation. In this regards, a calculation method of spatio-temporal process emulation with elaborate particles for dam-break flood was proposed. Moreover the spatio-temporal process was dynamic simulated by using GIS modelling and visualization. The results show that the method gets more information, objectiveness and real situations.

2010 ◽  
Vol 11 (6) ◽  
pp. 845-853
Author(s):  
Xinzhong YANG ◽  
Yunyan DU ◽  
Fenzhen SU ◽  
Min JI ◽  
Lijing WANG

Author(s):  
Kenny W. Q. Low ◽  
Chun Hean Lee ◽  
Antonio J. Gil ◽  
Jibran Haider ◽  
Javier Bonet

AbstractThis paper presents a new Smooth Particle Hydrodynamics computational framework for the solution of inviscid free surface flow problems. The formulation is based on the Total Lagrangian description of a system of first-order conservation laws written in terms of the linear momentum and the Jacobian of the deformation. One of the aims of this paper is to explore the use of Total Lagrangian description in the case of large deformations but without topological changes. In this case, the evaluation of spatial integrals is carried out with respect to the initial undeformed configuration, yielding an extremely efficient formulation where the need for continuous particle neighbouring search is completely circumvented. To guarantee stability from the SPH discretisation point of view, consistently derived Riemann-based numerical dissipation is suitably introduced where global numerical entropy production is demonstrated via a novel technique in terms of the time rate of the Hamiltonian of the system. Since the kernel derivatives presented in this work are fixed in the reference configuration, the non-physical clumping mechanism is completely removed. To fulfil conservation of the global angular momentum, a posteriori (least-squares) projection procedure is introduced. Finally, a wide spectrum of dedicated prototype problems is thoroughly examined. Through these tests, the SPH methodology overcomes by construction a number of persistent numerical drawbacks (e.g. hour-glassing, pressure instability, global conservation and/or completeness issues) commonly found in SPH literature, without resorting to the use of any ad-hoc user-defined artificial stabilisation parameters. Crucially, the overall SPH algorithm yields equal second order of convergence for both velocities and pressure.


Author(s):  
S. Anathpindika

AbstractSheet-like clouds are common in turbulent gas and perhaps form via collisions between turbulent gas flows. Having examined the evolution of an isothermal shocked slab in an earlier contribution, in this work we follow the evolution of a sheet-like cloud confined by (thermal) pressure and gas in it is allowed to cool. The extant purpose of this endeavour is to study the early phases of core-formation. The observed evolution of this cloud supports the conjecture that molecular clouds themselves are three-phase media (comprising viz. a stable cold and warm medium, and a third thermally unstable medium), though it appears, clouds may evolve in this manner irrespective of whether they are gravitationally bound. We report, this sheet fragments initially due to the growth of the thermal instability (TI) and some fragments are elongated, filament-like. Subsequently, relatively large fragments become gravitationally unstable and sub-fragment into smaller cores. The formation of cores appears to be a three stage process: first, growth of the TI leads to rapid fragmentation of the slab; second, relatively small fragments acquire mass via gas-accretion and/or merger and third, sufficiently massive fragments become susceptible to the gravitational instability and sub-fragment to form smaller cores. We investigate typical properties of clumps (and smaller cores) resulting from this fragmentation process. Findings of this work support the suggestion that the weak velocity field usually observed in dense clumps and smaller cores is likely seeded by the growth of dynamic instabilities. Simulations were performed using the smooth particle hydrodynamics algorithm.


2021 ◽  
Author(s):  
GEORGE BARLOW ◽  
MATHEW SCHEY ◽  
SCOTT STAPLETON

Modeling composites can be an effective way to understand how a part will perform without requiring the destruction of costly specimens. By combining artificial fiber entanglement with manufacturing process simulation, a method was developed to create fiber bundle models using entanglement to control the fiber volume fraction. This fiber entanglement generation uses three parameters, probability of swapping (p_(r_S )), swapping radius standard deviation (r_(σ_S )), and the swapping plane spacing (l_S), to control the amount of entanglement within the fiber bundle. A parametric study was conducted and found that the more entanglement within a fiber bundle, the more compression mold pressure required to compact the fiber bundle to the same fiber volume fraction as that required for a less entangled bundle. This artificial fiber entanglement and manufacturing process simulation method for creating fiber bundles shows the potential to be able to create bundles with controlled final volume fraction using a desired mold compression pressure.


Sign in / Sign up

Export Citation Format

Share Document