scholarly journals Formation of Prestellar Cores via Non-Isothermal Gas Fragmentation

Author(s):  
S. Anathpindika

AbstractSheet-like clouds are common in turbulent gas and perhaps form via collisions between turbulent gas flows. Having examined the evolution of an isothermal shocked slab in an earlier contribution, in this work we follow the evolution of a sheet-like cloud confined by (thermal) pressure and gas in it is allowed to cool. The extant purpose of this endeavour is to study the early phases of core-formation. The observed evolution of this cloud supports the conjecture that molecular clouds themselves are three-phase media (comprising viz. a stable cold and warm medium, and a third thermally unstable medium), though it appears, clouds may evolve in this manner irrespective of whether they are gravitationally bound. We report, this sheet fragments initially due to the growth of the thermal instability (TI) and some fragments are elongated, filament-like. Subsequently, relatively large fragments become gravitationally unstable and sub-fragment into smaller cores. The formation of cores appears to be a three stage process: first, growth of the TI leads to rapid fragmentation of the slab; second, relatively small fragments acquire mass via gas-accretion and/or merger and third, sufficiently massive fragments become susceptible to the gravitational instability and sub-fragment to form smaller cores. We investigate typical properties of clumps (and smaller cores) resulting from this fragmentation process. Findings of this work support the suggestion that the weak velocity field usually observed in dense clumps and smaller cores is likely seeded by the growth of dynamic instabilities. Simulations were performed using the smooth particle hydrodynamics algorithm.

Author(s):  
Kenny W. Q. Low ◽  
Chun Hean Lee ◽  
Antonio J. Gil ◽  
Jibran Haider ◽  
Javier Bonet

AbstractThis paper presents a new Smooth Particle Hydrodynamics computational framework for the solution of inviscid free surface flow problems. The formulation is based on the Total Lagrangian description of a system of first-order conservation laws written in terms of the linear momentum and the Jacobian of the deformation. One of the aims of this paper is to explore the use of Total Lagrangian description in the case of large deformations but without topological changes. In this case, the evaluation of spatial integrals is carried out with respect to the initial undeformed configuration, yielding an extremely efficient formulation where the need for continuous particle neighbouring search is completely circumvented. To guarantee stability from the SPH discretisation point of view, consistently derived Riemann-based numerical dissipation is suitably introduced where global numerical entropy production is demonstrated via a novel technique in terms of the time rate of the Hamiltonian of the system. Since the kernel derivatives presented in this work are fixed in the reference configuration, the non-physical clumping mechanism is completely removed. To fulfil conservation of the global angular momentum, a posteriori (least-squares) projection procedure is introduced. Finally, a wide spectrum of dedicated prototype problems is thoroughly examined. Through these tests, the SPH methodology overcomes by construction a number of persistent numerical drawbacks (e.g. hour-glassing, pressure instability, global conservation and/or completeness issues) commonly found in SPH literature, without resorting to the use of any ad-hoc user-defined artificial stabilisation parameters. Crucially, the overall SPH algorithm yields equal second order of convergence for both velocities and pressure.


2010 ◽  
Vol 6 (S270) ◽  
pp. 255-262 ◽  
Author(s):  
Ph. André ◽  
A. Men'shchikov ◽  
V. Könyves ◽  
D. Arzoumanian

AbstractWe briefly review ground-based (sub)millimeter dust continuum observations of the prestellar core mass function (CMF) and its connection to the stellar initial mass function (IMF). We also summarize the first results obtained on this topic from the Herschel Gould Belt survey, one of the largest key projects with the Herschel Space Observatory. Our early findings with Herschel confirm the existence of a close relationship between the CMF and the IMF. Furthermore, they suggest a scenario according to which the formation of prestellar cores occurs in two main steps: 1) complex networks of long, thin filaments form first, probably as a result of interstellar MHD turbulence; 2) the densest filaments then fragment and develop prestellar cores via gravitational instability.


Author(s):  
O. Lomax ◽  
A. P. Whitworth ◽  
D. A. Hubber

AbstractDisc fragmentation provides an important mechanism for producing low-mass stars in prestellar cores. Here, we describe smoothed particle hydrodynamics simulations which show how populations of prestellar cores evolve into stars. We find the observed masses and multiplicities of stars can be recovered under certain conditions.First, protostellar feedback from a star must be episodic. The continuous accretion of disc material on to a central protostar results in local temperatures which are too high for disc fragmentation. If, however, the accretion occurs in intense outbursts, separated by a downtime of ~ 104yr, gravitational instabilities can develop and the disc can fragment.Second, a significant amount of the cores’ internal kinetic energy should be in solenoidal turbulent modes. Cores with less than a third of their kinetic energy in solenoidal modes have insufficient angular momentum to form fragmenting discs. In the absence of discs, cores can fragment but results in a top-heavy distribution of masses with very few low-mass objects.


2019 ◽  
Author(s):  
Anthony Manson

Total Lagrangian Smooth Particle Hydrodynamics (TLSPH) has been applied to a set of non-trivial, commercially interesting forging examples.Being a mesh-free method, TLSPH can conveniently simulate processes having large deformation and material separation.Test cases were designed that were characterized by large material flows having large changes in grain connectivity.The implementation used, Smooth Mach Dynamics (SMD), provided tunable simulation parameters that enabled the simulation to optimally match each case.The results showed that the TLSPH/SMD has the potential to model the metal forging process efficiently without numerical instabilities.Each case studied required adaptation of the simulation parameters to optimize the results.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5243
Author(s):  
Froylan Alonso Soriano-Moranchel ◽  
Juan Manuel Sandoval-Pineda ◽  
Guadalupe Juliana Gutiérrez-Paredes ◽  
Usiel Sandino Silva-Rivera ◽  
Luis Armando Flores-Herrera

The aim of this work is to simulate the fragmentation of bullets impacted through granular media, in this case, sand. In order to validate the simulation, a group of experiments were conducted with the sand contained in two different box prototypes. The walls of the first box were constructed with fiberglass and the second with plywood. The prototypes were subjected to the impact force of bullets fired 15 m away from the box. After the shots, X-ray photographs were taken to observe the penetration depth. Transient numerical analyses were conducted to simulate these physical phenomena by using the smooth particle hydrodynamics (SPH) module of ANSYS® 2019 AUTODYN software. Advantageously, this module considers the granular media as a group of uniform particles capable of transferring kinetic energy during the elastic collision component of an impact. The experimental results demonstrated a reduction in the maximum bullet kinetic energy of 2750 J to 100 J in 0.8 ms. The numerical results compared with the X-ray photographs showed similar results demonstrating the capability of sand to dissipate kinetic energy and the fragmentation of the bullet caused at the moment of impact.


2020 ◽  
Vol 125 ◽  
pp. 103669 ◽  
Author(s):  
Mario Germán Trujillo-Vela ◽  
Sergio Andrés Galindo-Torres ◽  
Xue Zhang ◽  
Alfonso Mariano Ramos-Cañón ◽  
Jorge Alberto Escobar-Vargas

Sign in / Sign up

Export Citation Format

Share Document