scholarly journals LANDSLIDE IDENTIFICATION FROM IRS-P6 LISS-IV TEMPORAL DATA-A COMPARATIVE STUDY USING FUZZY BASED CLASSIFIERS

Author(s):  
S. S. Sengar ◽  
S. K. Ghosh ◽  
A. Kumar ◽  
H. Chaudhary

<p><strong>Abstract.</strong> While extracting land cover from remote sensing images, each pixel in the image is allocated to one of the possible class. In reality different land covers within a pixel can be found due to continuum of variation in landscape and intrinsic mixed nature of most classes. Mixed pixels may not be appropriately processed by traditional image classifiers, which assume that pixels are pure. The existence of mixed pixels led to the development of several approaches for soft (often termed fuzzy in the remote sensing literature) classification in which each pixel is allocated to all classes in varying proportions. However, while the proportions of each land cover within each pixel may be predicted, the spatial location of each land cover within each pixel is not. Thus, it is important to develop and implement a classifier that can work as soft classifiers for landslide identification. This work is an attempt to document and identify landslide areas by five spectral indices using temporal multi-spectral images from IRS-P6 LISS-IV images. To improve the spectral properties of spectral indices for specific class identification (in this case landslide) a Class Based Sensor Independent (CBSI) technique proposed. The result indicates that CBSI based Transformed Normalized Difference Vegetation Index (TNDVI) temporal indices data gives better results for landslide identification with minimum entropy and membership range.</p>

2012 ◽  
Vol 42 (6) ◽  
pp. 1060-1071
Author(s):  
Chih-Da Wu ◽  
Chi-Chuan Cheng ◽  
Yung-Chung Chuang

The Chilan Mountain cypress forest, northeastern Taiwan, is the only one where the genus Chamaecyparis is situated in a subtropical region. The health of a forest ecosystem is closely tied to the evapotranspiration (ET) of water through forests. This study focused on estimating the ET of old-growth cypress in the Chilan Mountain area and investigated its spatial variability in different watershed divisions using remote sensing. Our methods included applying hybrid image classification to generate land cover maps using Landsat-5 images, calculating habitat characteristics of old-growth using the Surface Energy Balance Algorithm for Land (SEBAL), investigating spatial variability of ET in relation to environmental parameters, and examining the gap-snag effect on old-growth cypress ET. The results indicated that the study area was classified into three land cover types (i.e., old-growth, non-old growth, and others). Old-growth had lower values in net radiance, the normalized difference vegetation index (NDVI), and daily ET than did non-old-growth. Watershed divisions at various scales did cause the variation on old-growth ET characteristics according to the selected parameters and the number of parameters for predicting the value of ET. Finally, ET between gap-snag and non-gap-snag habitats was statistically different. A higher proportion in gap-snag composition would lead to a lower value in daily ET and the NDVI.


2017 ◽  
Vol 12 (3) ◽  
pp. 678-684
Author(s):  
Jagriti Tiwari ◽  
S.K. Sharma ◽  
R.J. Patil

The spatial analysis of land use and land cover (LULC) dynamics is necessary for sustainable utilization and management of the land resources of an area. Remote sensing along with Geographical Information System emerged as an effective technique for mapping the LU/LC categories of an area in an efficient and cost-effective manner. The present study was conducted in Banjar river watershed located in Balaghat and Mandla district of Madhya Pradesh, India. The Normalized Difference Vegetation Index (NDVI) approach was adopted for LU/LC classification of study area. The Landsat-8 satellite data of year 2013 was selected for the classification purpose. The NDVI values were generated in ERDAS Imagine 2011 software and LU/LC map was prepared in ARC GIS environment. On the basis of NDVI values five LU/LC classes were recognized in the study area namely river & water body, waste land & habitation, forest, agriculture/other vegetation, open land/fallow land/barren land. The forest cover was found to be highly distributed in the study area with an extent of 115811 ha and least area was found to be covered under river and water body (4057.28 ha). This research work will be helpful for the policy makers for proper formulation and implementation of watershed developmental plans.


2018 ◽  
Vol 24 (9) ◽  
pp. 96 ◽  
Author(s):  
Marwah Moojid Kadhim

Al-Dalmaj marsh and the near surrounding area is a very promising area for energy resources, tourism, agricultural and industrial activities. Over the past century, the Al-Dalmaje marsh and near surroundings area endrous from a number of changes. The current study highlights the spatial and temporal changes detection in land cover for Al-Dalmaj marsh and near surroundings area using different analyses methods the supervised maximum likelihood classification method, the Normalized  Difference Vegetation Index (NDVI), Geographic Information Systems(GIS),  and Remote Sensing (RS). Techniques spectral indices were used in this study to determine the change of wetlands and drylands area and of other land classes, through analyses Landsat images for different three years (1990, 2003, 2016). The results indicated that there was an annual increase in vegetation was from 1990 with 980.68 km2, and 1420.35km2 in 2003 to 2072.98km2 in 2016. Whereas, the annual water coverage was about 185.95km2 in 1990 then dropped to 68.27km2 in 2003, and rose to 180.23 km2 in 2016. The water coverage increasing was on the account of barren lands areas, which were significantly decreased. These collected data can be used to deliver accurate information of the values of vegetation,water, wetlands and drylands sustainability of resources which can be used to make plans to increase tourism and protected areas by using barren lands which cannot be reclaimed for agriculture, and cultivate a new renewable energy can be set up  as solar power stations.  


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1909
Author(s):  
Enrico Borgogno-Mondino ◽  
Laura de Palma ◽  
Vittorino Novello

The protection of vineyards with overhead plastic covers is a technique largely applied in table grape growing. As with other crops, remote sensing of vegetation spectral reflectance is a useful tool for improving management even for table grape viticulture. The remote sensing of the spectral signals emitted by vegetation of covered vineyards is currently an open field of investigation, given the intrinsic nature of plastic sheets that can have a strong impact on the reflection from the underlying vegetation. Baring these premises in mind, the aim of the present work was to run preliminary tests on table grape vineyards covered with polyethylene sheets, using Copernicus Sentinel 2 (Level 2A product) free optical data, and compare their spectral response with that of similar uncovered vineyards to assess if a reliable spectral signal is detectable through the plastic cover. Vine phenology, air temperature and shoot growth, were monitored during the 2016 growing cycle. Twenty-four Copernicus Sentinel 2 (S2, Level 2A product) images were used to investigate if, in spite of plastic sheets, vine phenology can be similarly described with and without plastic covers. For this purpose, time series of S2 at-the-ground reflectance calibrated bands and correspondent normalized difference vegetation index (NDVI), modified soil-adjusted vegetation index, version two (MSAVI2) and normalized difference water index (NDWI) spectral indices were obtained and analyzed, comparing the responses of two covered vineyards with different plastic sheets in respect of two uncovered ones. Results demonstrated that no significant limitation (for both bands and spectral indices) was introduced by plastic sheets while monitoring spectral behavior of covered vineyards.


2020 ◽  
Vol 8 (2) ◽  
pp. 192-205
Author(s):  
Daniel Plekhov ◽  
Linda R. Gosner ◽  
Alexander J. Smith ◽  
Jessica Nowlin

ABSTRACTSatellite imagery has long been recognized as well suited for the regional and ecological questions of many archaeological surveys. One underexplored aspect of such data is their temporal resolution. It is now possible for areas to be imaged on an almost daily basis, and this resolution offers new opportunities for studying landscapes through remote sensing in parallel with ground-based survey. This article explores the applications of these data for visibility assessment and land-cover change detection in the context of the Sinis Archaeological Project, a regional archaeological survey of west-central Sardinia. We employ imagery provided by Planet, which has a spatial resolution of 3 m, in four spectral bands, and is collected daily. Using Normalized Difference Vegetation Index (NDVI) values calculated for each survey unit, we find that there is a relationship between NDVI values and field-reported visibility in general, though the strength of this correlation differs according to land-cover classes. We also find the data to be effective at tracking short-term changes in field conditions that allow us to differentiate fields of similar land cover and visibility. We consider limitations and potentials of these data and encourage further experimentation and development.


2017 ◽  
Vol 1 (2) ◽  
pp. 74
Author(s):  
Phillip W. Mambo ◽  
John E. Makunga

Purpose: The study was conducted in Selous Game Reserve, with intention of developing GIS and Remote Sensing based wildlife management system in the protected area.Methodology: All habitats were digitised using ArcGIS9.3 in which five scenes of Landsat TM and ETM+ digital images were acquired during dry seasons of the year 2000 and 2010. Band 3 and 4 of the Landsat images were used for calculation of normalized difference vegetation index (NDVI) for determination of vegetation spatial distributionResults: The NDVI maps of year 2000 to 2010 revealed the vegetation density depletion from 0.72 (obtained in 0.46─0.72 value interval and covering 46.5% pixel area) in 2000 as compared to 0.56 ( found in 0.38─0.56 value interval and covering 8.04% pixel area) in 2010 NDVI maps.Unique contribution to theory, practice and policy: It was recommended that there was a necessity to integrate applications of remote sensing and GIS techniques for the assessment and monitoring of the natural land cover variability to detect fragmentation and loss of wildlife species.


2019 ◽  
Vol 6 (4) ◽  
pp. 775
Author(s):  
Eveline Pereira ◽  
Eduarda Silveira ◽  
Inácio Thomaz Bueno ◽  
Fausto Weimar Acerbi Júnior

The Brazilian Savannas have been under increasing anthropic pressure for many years, and land-use/land-cover changes (LULCC) have been largely neglected. Remote sensing provides useful tools to detect changes, but previous studies have not attempted to separate the effects of phenology from deforestation, clearing or fires to improve the accuracy of change detection without a dense time series. The scientific questions addressed in this study were: how well can we differentiate seasonal changes from deforestation processes combining the spatial and spectral information of bi-temporal (normalized difference vegetation index) NDVI images? Which feature best contribute to increase the separability on classification assessment? We applied an object-based remote sensing method that is able to separate seasonal changes due to phenology effects from LULCC by combining spectral and the spatial context using traditional spectral features and semivariogram indices, exploring the full capability of NDVI image difference to train random forest (RF) algorithm. We found that the spatial variability of NDVI values is not affect by vegetation seasonality and, therefore, the combination of spectral features and semivariogram indices provided high global accuracy (97.73%) to separate seasonal changes and deforestation or fires. From the total of 13 features, 6 provided the best combination to increase the separability on classification assessment (4 spatial and 2 spectral features). How to accurately extract LULCC while disregarding the ones caused by phenological differences in Brazilian seasonal biomes undergoing rapid land-cover changes can be achieved by adding semivariogram indices in combination with spectral features as input data to train RF algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Irwan Ary Dharmawan ◽  
Muhammad Ario Eko Rahadianto ◽  
Edward Henry ◽  
Cipta Endyana ◽  
Muhammad Aufaristama

The study of Land Use Land Cover (LULC) is essential to understanding how land has been altered in recent years and what has caused the processes behind the change. This is significant for the future development of the area, particularly on the campus of the Universitas Padjadjaran Jatinangor. The purpose of this study was to apply remote-sensing techniques to map a university campus and vicinity by comparing the area of urban green space (UGS) and floor area ratios (FARs) of the campus in 2015 and 2017. Additionally, surface runoff analysis was also conducted. For our research, we used WorldView-2’s high-resolution satellite imagery with a resolution of 0.46 m in the Universitas Padjadjaran (Padjadjaran University, or Unpad) Jatinangor campus, Jawa Barat, Indonesia. Our approach was to interpret the imagery by running the normalized difference vegetation index (NDVI) to distinguish UGS and FAR and using digital elevation model (DEM) interferometric synthetic aperture radar (SAR) data with hydrologic analysis to identify the direction of surface runoff. The results obtained are as follows: the UGS remained more extensive compared with FAR, but the difference decreased over time owing to infrastructure development. Surface runoff has tended to flow toward the southeast in direct relation to the slope configuration.


Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 457 ◽  
Author(s):  
Jose Sobrino ◽  
Rafael Llorens ◽  
Cristina Fernández ◽  
José Fernández-Alonso ◽  
José Vega

Forest fires in Galicia have become a serious environmental problem over the years. This is especially the case in the Pontevedra region, where in October 2017 large fires (>500 hectares) burned more than 15,000 Ha. In addition to the area burned being of relevance, it is also very important to know quickly and accurately the different severity degrees that soil has suffered in order to carry out an optimal restoration campaign. In this sense, the use of remote sensing with the Sentinel-2 and Landsat-8 satellites becomes a very useful resource due to the variations that appear in soil after a forest fire (changes in soil cover are noticeably appreciated with spectral information). To calculate these variations, the spectral indices NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) are used, both before and after the fire and their differences (dNBR and dNDVI, respectively). In addition, as a reference for a correct discrimination between severity degrees, severity data measured in situ after the fire are used to classified at 5 levels of severity and 6 levels of severity. Therefore, this study aims to establish a methodology, which relates remote-sensing data (spectral indices) and severity degrees measured in situ. The R2 statistic and the pixel classification accuracy results show the existing synergy of the Sentinel-2 dNBR index with the 5 severity degrees classification (R2 = 0.74 and 81% of global accuracy) and, for this case, the good applicability of remote sensing in the forest fire field.


2020 ◽  
Author(s):  
Daniel Plekhov ◽  
Linda R. Gosner ◽  
Alexander J. Smith ◽  
Jessica Nowlin

Satellite imagery has long been recognized as well suited for the regional and ecological questions of many archaeological surveys. One underexplored aspect of such data is their temporal resolution. It is now possible for areas to be imaged on an almost daily basis, and this resolution offers new opportunities for studying landscapes through remote sensing in parallel with ground-based survey. This article explores the applications of these data for visibility assessment and land-cover change detection in the context of the Sinis Archaeological Project, a regional archaeological survey of west-central Sardinia. We employ imagery provided by Planet, which has a spatial resolution of 3 m, in four spectral bands, and is collected daily. Using Normalized Difference Vegetation Index (NDVI) values calculated for each survey unit, we find that there is a relationship between NDVI values and field-reported visibility in general, though the strength of this correlation differs according to land-cover classes. We also find the data to be effective at tracking short-term changes in field conditions that allow us to differentiate fields of similar land cover and visibility. We consider limitations and potentials of these data and encourage further experimentation and development.


Sign in / Sign up

Export Citation Format

Share Document