scholarly journals A TERRESTRIAL LASER SCANNING MEASUREMENT STATION TO MONITOR LONG-TERM STRUCTURAL DYNAMICS IN A BOREAL FOREST

Author(s):  
M. Campos ◽  
P. Litkey ◽  
Y. Wang ◽  
Y. Chen ◽  
H. Hyyti ◽  
...  

Abstract. This work presents a data acquisition framework and the technical details of a permanent terrestrial laser scanning (TLS) measurement station for high spatial and temporal resolution forest observation that was developed in the Finnish Geospatial Research Institute. The TLS measurement station was established to provide hyper-temporal time series of three-dimensional point cloud data for long term monitoring of a boreal forest. Time series data acquisition framework consists of regular 14-minute scans performed by a RIEGL VZ-2000i laser scanner in every 30 minutes, resulting in the collection of 48 scans per day. The entire framework includes the setting up of the laser scanner, the initialization of daily project, the scanning data acquisition over a preset time window, the storage management of the collected data at a local measurement computer, and the transfer of data from the measurement computer to network-attached storage (NAS) for further data processes. The operability of the proposed TLS measurement station was first piloted at a test area of about 32,500 m2 in Southern Finland (60°09'N, 24°32'E). A set of several long monitoring experiments were performed over the whole growing season from the beginning of April to the end of October in 2019. As preliminary results, the time series outputs have captured detailed information on the phenological changes in the test site with sub-centimetre accuracy. For instance, it was possible to visualize plant dynamics phenomena, such as the sprouting of leaves in spring and their falling in autumn.

2021 ◽  
Vol 11 ◽  
Author(s):  
Mariana Batista Campos ◽  
Paula Litkey ◽  
Yunsheng Wang ◽  
Yuwei Chen ◽  
Heikki Hyyti ◽  
...  

The terrestrial laser scanner (TLS) has become standard technology for vegetation dynamics monitoring. TLS time series have significant underlying application in investigating structural development and dynamics on a daily and seasonal scale. However, the high potential of TLS for the monitoring of long-term temporal phenomena in fully grown trees with high spatial and temporal resolution has not yet been fully explored. Automated TLS platforms for long-term data collection and monitoring of forest dynamics are rare; and long-term TLS time series data is not yet readily available to potential end-user, such as forestry researchers and plant biologists. This work presents an automated and permanent TLS measurement station that collects high frequency and high spatial resolution TLS time series, aiming to monitor short- and long-term phenological changes at a boreal forestry field station (0.006° angular resolution, one scan per hour). The measurement station is the first of its kind considering the scope, accuracy, and length of the time series it produces. The TLS measurement station provides a unique dataset to monitor the 3D physical structure of a boreal forest, enabling new insights into forest dynamics. For instance, the information collected by the TLS station can be used to accurately detect structural changes in tree crowns surrounding the station. These changes and their timing can be linked with the phenological state of plants, such as the start of leaf-out during spring growing season. As the first results of this novel station, we present time series data products collected with the station and what detailed information it provides about the phenological changes in the test site during the leaf sprout in spring.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 416
Author(s):  
Bwalya Malama ◽  
Devin Pritchard-Peterson ◽  
John J. Jasbinsek ◽  
Christopher Surfleet

We report the results of field and laboratory investigations of stream-aquifer interactions in a watershed along the California coast to assess the impact of groundwater pumping for irrigation on stream flows. The methods used include subsurface sediment sampling using direct-push drilling, laboratory permeability and particle size analyses of sediment, piezometer installation and instrumentation, stream discharge and stage monitoring, pumping tests for aquifer characterization, resistivity surveys, and long-term passive monitoring of stream stage and groundwater levels. Spectral analysis of long-term water level data was used to assess correlation between stream and groundwater level time series data. The investigations revealed the presence of a thin low permeability silt-clay aquitard unit between the main aquifer and the stream. This suggested a three layer conceptual model of the subsurface comprising unconfined and confined aquifers separated by an aquitard layer. This was broadly confirmed by resistivity surveys and pumping tests, the latter of which indicated the occurrence of leakage across the aquitard. The aquitard was determined to be 2–3 orders of magnitude less permeable than the aquifer, which is indicative of weak stream-aquifer connectivity and was confirmed by spectral analysis of stream-aquifer water level time series. The results illustrate the importance of site-specific investigations and suggest that even in systems where the stream is not in direct hydraulic contact with the producing aquifer, long-term stream depletion can occur due to leakage across low permeability units. This has implications for management of stream flows, groundwater abstraction, and water resources management during prolonged periods of drought.


2007 ◽  
pp. 88
Author(s):  
Wataru Suzuki ◽  
Yanfei Zhou

This article represents the first step in filling a large gap in knowledge concerning why Public Assistance (PA) use recently rose so fast in Japan. Specifically, we try to address this problem not only by performing a Blanchard and Quah decomposition on long-term monthly time series data (1960:04-2006:10), but also by estimating prefecturelevel longitudinal data. Two interesting findings emerge from the time series analysis. The first is that permanent shock imposes a continuously positive impact on the PA rate and is the main driving factor behind the recent increase in welfare use. The second finding is that the impact of temporary shock will last for a long time. The rate of the use of welfare is quite rigid because even if the PA rate rises due to temporary shocks, it takes about 8 or 9 years for it to regain its normal level. On the other hand, estimations of prefecture-level longitudinal data indicate that the Financial Capability Index (FCI) of the local government2 and minimum wage both impose negative effects on the PA rate. We also find that the rapid aging of Japan's population presents a permanent shock in practice, which makes it the most prominent contribution to surging welfare use.


2017 ◽  
Author(s):  
Easton R White

Long-term time series are necessary to better understand population dynamics, assess species' conservation status, and make management decisions. However, population data are often expensive, requiring a lot of time and resources. When is a population time series long enough to address a question of interest? We determine the minimum time series length required to detect significant increases or decreases in population abundance. To address this question, we use simulation methods and examine 878 populations of vertebrate species. Here we show that 15-20 years of continuous monitoring are required in order to achieve a high level of statistical power. For both simulations and the time series data, the minimum time required depends on trend strength, population variability, and temporal autocorrelation. These results point to the importance of sampling populations over long periods of time. We argue that statistical power needs to be considered in monitoring program design and evaluation. Time series less than 15-20 years are likely underpowered and potentially misleading.


Media Ekonomi ◽  
2017 ◽  
Vol 20 (1) ◽  
pp. 83
Author(s):  
Jumadin Lapopo

<p>Poverty is being a problem in all developing countries including Indonesia. Among goverment programs, poverty has become the center offattention in policy at both of the regional and national levels. Looking at thephenomenon of poverty, Islam present with solution to reduce poverty through Zakat. This study aims to analyze the effect of ZIS and Zakat Fitrah against poverty in Indonesia in 1998 until 2010, data used in this study is secondary data and uses time series data, for the dependent variabel is poverty and for independent variables are ZIS and Zakat Fitrah. The analysis tools used in this study is to use multiple regression analysis model and the assumptions of classical test using the software Eviews-4. In this study also concluded that the ZIS variables significantly affect to the reduction of poverty in Indonesia although the effect is very small. In the variable Zakat Fitrah not significantly affect poverty reduction in Indonesia because of the nature of Zakat Fitrah is for consumption and not for long-term needs. The results of this study can be used for the management of zakat to be able to develop the management and to get a better system for distribution of zakat so that the main purpose of zakat can be achieved to reduce poverty.<br />Keywords : Poverty, Zakat Fitrah, ZIS.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Jia Chaolong ◽  
Xu Weixiang ◽  
Wang Futian ◽  
Wang Hanning

The combination of linear and nonlinear methods is widely used in the prediction of time series data. This paper analyzes track irregularity time series data by using gray incidence degree models and methods of data transformation, trying to find the connotative relationship between the time series data. In this paper, GM(1,1)is based on first-order, single variable linear differential equations; after an adaptive improvement and error correction, it is used to predict the long-term changing trend of track irregularity at a fixed measuring point; the stochastic linear AR, Kalman filtering model, and artificial neural network model are applied to predict the short-term changing trend of track irregularity at unit section. Both long-term and short-term changes prove that the model is effective and can achieve the expected accuracy.


2018 ◽  
Vol 7 (4.15) ◽  
pp. 25 ◽  
Author(s):  
Said Jadid Abdulkadir ◽  
Hitham Alhussian ◽  
Muhammad Nazmi ◽  
Asim A Elsheikh

Forecasting time-series data are imperative especially when planning is required through modelling using uncertain knowledge of future events. Recurrent neural network models have been applied in the industry and outperform standard artificial neural networks in forecasting, but fail in long term time-series forecasting due to the vanishing gradient problem. This study offers a robust solution that can be implemented for long-term forecasting using a special architecture of recurrent neural network known as Long Short Term Memory (LSTM) model to overcome the vanishing gradient problem. LSTM is specially designed to avoid the long-term dependency problem as their default behavior. Empirical analysis is performed using quantitative forecasting metrics and comparative model performance on the forecasted outputs. An evaluation analysis is performed to validate that the LSTM model provides better forecasted outputs on Standard & Poor’s 500 Index (S&P 500) in terms of error metrics as compared to other forecasting models.  


Sign in / Sign up

Export Citation Format

Share Document