scholarly journals FIRST ASSESSMENTS INTO THE USE OF COMMERCIAL-GRADE SOLID STATE LIDAR FOR LOW COST HERITAGE DOCUMENTATION

Author(s):  
A. Murtiyoso ◽  
P. Grussenmeyer ◽  
T. Landes ◽  
H. Macher

Abstract. Heritage documentation has benefitted greatly from significant developments in sensor technology during the past two decades. Miniaturisation of sensors is also an important aspect in the development of low cost sensors, always interesting in heritage projects where budgetary constraints are often present. Among these sensors, the solid-state lidar has begun to attract attention, partly due to its integration in Apple Inc.’s latest version of the iPhone and iPad series. We hypothesise that this type of sensor will see a lot of use in the near future; however, the question remains whether they are sufficient for heritage documentation purposes. In this paper, results from the 2020 iPad Pro SSL point cloud will be assessed and compared to more traditional techniques for 3D scanning (photogrammetry and terrestrial laser scanning). While understandably the geometric quality of benchmark-level techniques such as these remain undeniably better, at least for the moment, the paper concludes that SSL sensors may nevertheless be sufficient for some lower-precision applications.

Author(s):  
J. Markiewicz ◽  
D. Zawieska ◽  
P. Podlasiak

This paper presents an analysis of source photogrammetric data in relation to the examination of verticality in a monumental tower. In the proposed data processing methodology, the geometric quality of the point clouds relating to the monumental tower of the castle in Iłżawas established by using terrestrial laser scanning (Z+F 5006h, Leica C10), terrestrial photographs and digital images sourced via unmanned aerial vehicles (UAV) (Leica Aibot X6 Hexacopter). Tests were performed using the original software, developed by the authors, which allows for the automation of 3D point cloud processing. The software also facilitates the verification of the verticality of the tower and the assessment of the quality of utilized data.


1972 ◽  
Vol 34 (1) ◽  
pp. 316-318
Author(s):  
James F. Reus ◽  
Joseph W. Cullen

Electronic touch-sensitive recording apparatus has been very useful in research wherein drinking (tongue licking) is a dependent variable. Most of the systems used in the past for this purpose were electromechanical in design. The present report describes a relatively low-cost, low-maintenance system using solid state circuitry which is readily purchasable, easily interfaced, and highly reliable.


Author(s):  
A. Murtiyos ◽  
P. Grussenmeyer ◽  
D. Suwardhi ◽  
W. A. Fadilah ◽  
H. A. Permana ◽  
...  

<p><strong>Abstract.</strong> 3D recording is an important procedure in the conservation of heritage sites. This past decade, a myriad of 3D sensors has appeared in the market with different advantages and disadvantages. Most notably, the laser scanning and photogrammetry methods have become some of the most used techniques in 3D recording. The integration of these different sensors is an interesting topic, one which will be discussed in this paper. Integration is an activity to combine two or more data with different characteristics to produce a 3D model with the best results. The discussion in this study includes the process of acquisition, processing, and analysis of the geometric quality from the results of the 3D recording process; starting with the acquisition method, registration and georeferencing process, up to the integration of laser scanning and photogrammetry 3D point clouds. The final result of the integration of the two point clouds is the 3D point cloud model that has become a single entity. Some detailed parts of the object of interest draw both geometric and textural information from photogrammetry, while laser scanning provided a point cloud depicting the overall overview of the building. The object used as our case study is Sari Temple, located in Special Region of Yogyakarta, Indonesia.</p>


Author(s):  
A. Dlesk ◽  
K. Vach ◽  
P. Holubec

Abstract. This paper shows the possibilities of using low-cost photogrammetry for interior mapping as a tool to gather fast and accurate data for 3D modelling and BIM. To create a 3D model of a building interior with a high level of detail requires techniques such as laser scanning and photogrammetry. In the case of photogrammetry, it is possible to use standard cameras and SfM software to create an accurate point cloud which can be used for 3D modelling and then for BIM. The images captured indoor are often captured under lower light conditions. Using different exposure during capturing of images of building interior was tested. Frequent plain walls of a building interior cause that the images are usually lack of any features and their photogrammetric processing is getting much more difficult. In some cases, results of photogrammetric processing are poor and inaccurate. In this paper, an experiment of creating a 3D model of a building interior using photogrammetric processing of images was carried out. For this experiment digital camera with two different lenses (16 mm lens and fisheye lens) was used. For photogrammetric processing were chosen different software. All the results were compared to each other and to the laser scanning data of the interior. At the end of the paper, the discussion of the advantages and disadvantages of the shown method has been made.


Author(s):  
H.-J. Przybilla ◽  
M. Lindstaedt ◽  
T. Kersten

<p><strong>Abstract.</strong> The quality of image-based point clouds generated from images of UAV aerial flights is subject to various influencing factors. In addition to the performance of the sensor used (a digital camera), the image data format (e.g. TIF or JPG) is another important quality parameter. At the UAV test field at the former Zollern colliery (Dortmund, Germany), set up by Bochum University of Applied Sciences, a medium-format camera from Phase One (IXU 1000) was used to capture UAV image data in RAW format. This investigation aims at evaluating the influence of the image data format on point clouds generated by a Dense Image Matching process. Furthermore, the effects of different data filters, which are part of the evaluation programs, were considered. The processing was carried out with two software packages from Agisoft and Pix4D on the basis of both generated TIF or JPG data sets. The point clouds generated are the basis for the investigation presented in this contribution. Point cloud comparisons with reference data from terrestrial laser scanning were performed on selected test areas representing object-typical surfaces (with varying surface structures). In addition to these area-based comparisons, selected linear objects (profiles) were evaluated between the different data sets. Furthermore, height point deviations from the dense point clouds were determined using check points. Differences in the results generated through the two software packages used could be detected. The reasons for these differences are filtering settings used for the generation of dense point clouds. It can also be assumed that there are differences in the algorithms for point cloud generation which are implemented in the two software packages. The slightly compressed JPG image data used for the point cloud generation did not show any significant changes in the quality of the examined point clouds compared to the uncompressed TIF data sets.</p>


Author(s):  
I. Sarakinou ◽  
K. Papadimitriou ◽  
O. Georgoula ◽  
P. Patias

This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images’ radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.


Author(s):  
Avar Almukhtar ◽  
Henry Abanda ◽  
Zaid O. Saeed ◽  
Joseph H.M. Tah

The urgent need to improve performance in the construction industry has led to the adoption of many innovative technologies. 3D laser scanners are amongst the leading technologies being used to capture and process assets or construction project data for use in various applications. Due to its nascent nature, many questions are still unanswered about 3D laser scanning, which in turn contribute to the slow adaptation of the technology. Some of these include the role of 3D laser scanners in capturing and processing raw construction project data. How accurate is the 3D laser scanner or point cloud data? How does laser scanning fit with other wider emerging technologies such as Building Information Modelling (BIM)? This study adopts a proof-of-concept approach, which in addition to answering the afore-mentioned questions, illustrates the application of the technology in practice. The study finds that the quality of the data, commonly referred to as point cloud data is still a major issue as it depends on the distance between the target object and 3D laser scanner’s station. Additionally, the quality of the data is still very dependent on data file sizes and the computational power of the processing machine. Lastly, the connection between laser scanning and BIM approaches is still weak as what can be done with a point cloud data model in a BIM environment is still very limited. The aforementioned findings reinforce existing views on the use of 3D laser scanners in capturing and processing construction project data.


2014 ◽  
Vol 657 ◽  
pp. 795-799 ◽  
Author(s):  
Anastasios Chatzikonstantinou ◽  
Dimitrios Tzetzis ◽  
Panagiotis Kyratsis ◽  
Nikolaos Bilalis

The current work demonstrates a feasibility study on the generation of a copy, having a highly complex geometry, of a Greek paleontological find utilising reverse engineering and low-cost rapid prototyping techniques. A part of the jaw bone of a cave bear (Ursus spelaeus) that lived during the Pleistocene and became extinct about 10,000 years ago was digitized using a three-dimensional laser scanner. The resulting point-cloud of the scans was treated with a series of advanced software for the creation of surfaces and ultimately for a digital model. The generated model was three-dimensionally built by the aid of a Fused Deposition Modeling (FDM) apparatus. An analytical methodology is presented revealing the step by step approach from the scanning to the prototyping. It is believed that a variety of interested parties could benefit from such an analytical approach, including, production engineers, three-dimensional CAD users and designers, paleontologists and museum curators.


2019 ◽  
Vol 11 (15) ◽  
pp. 1749 ◽  
Author(s):  
Fengman Jia ◽  
Derek D. Lichti

With the rapid increase of terrestrial laser scanner (TLS) applications, especially for the high-accuracy modelling of large-volume objects, a design system is needed to provide solutions for both scanner and target placement that can meet the project requirements in terms of completeness, precision, economy, and reliability. In this paper, a hierarchical strategy driven by an improved optimization method is developed to solve the TLS viewpoint planning problem. In addition, the placement of the targets is determined by optimizing the target arrangement criterion, and the number of target locations is minimized by accepting the close to optimal target arrangements. Finally, the quality of the design, including the sensitivity of the object coverage to viewpoint placement and the precision of the point cloud are provided. Two building complexes located on University of Calgary campus are used as the experimental datasets in this research. The designs for scanner placement are compared with the “brute force” strategy in terms of the optimality of the solutions and runtime. The results showed that the proposed strategy provided scanning networks with a compatible quality but with more than 80% time savings in design. The number of targets necessary for registration from our system is surprisingly small, considering the volume and complexity of the networks. Through the quality assessments, the sensitivity of the object coverage to the scanner placement indicates how careful the field crew should be when placing the scanner for data capture, and the point cloud precision indicates if the network design can meet the project requirements.


Sign in / Sign up

Export Citation Format

Share Document