scholarly journals EXPERIENCE AND ATMOSPHERE OF THE BUILT HERITAGE IN DIGITAL ENVIRONMENT

Author(s):  
P. Jouan ◽  
P. Sadzot ◽  
D. Laboury ◽  
P. Hallot

Abstract. The digital documentation of heritage places produces accurate 3D restitution of their geometry in a virtual environment and can be related to multiple semantic layers to archive, represent, preserve and transmit the knowledge gathered along their lifecycle. The combination of high-density point clouds with other sources of information advises virtual reconstitutions of historical states of a place’s physical realm. The cultural significance of the built heritage lies in the values associated with its tangible and intangible dimensions. Apart from aspects of values related to historical sites’ physical attributes, 3D models can support the representation of intangible elements influencing visitors’ perception of their Genius Loci and supporting new interpretations about their cultural significance. In this framework, 3D animation, rendering, and simulation technologies allow recreating aspects of a place’s atmosphere, like the simulation of lighting conditions and the user’s immersive experience of a heritage site into a virtual environment. This paper focuses on the light perception recreated in a funeral chapel of the Theban Tomb environment by considering the strong spiritual dimension in the conception of funeral sites in ancient Egypt during the New Kingdom period (1550–1069 BC). We investigate the potential of 3D simulation and animation technologies to represent hypotheses about original lighting conditions in such sites. The proposed research is based on the case study of Sennefer’s tomb chapel, also referred to as TT96A, located on the western bank of the Nile, opposite modern Luxor.

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 98
Author(s):  
Valeria Croce ◽  
Gabriella Caroti ◽  
Andrea Piemonte ◽  
Marco Giorgio Bevilacqua

The digitization of Cultural Heritage paves the way for new approaches to surveying and restitution of historical sites. With a view to the management of integrated programs of documentation and conservation, the research is now focusing on the creation of information systems where to link the digital representation of a building to semantic knowledge. With reference to the emblematic case study of the Calci Charterhouse, also known as Pisa Charterhouse, this contribution illustrates an approach to be followed in the transition from 3D survey information, derived from laser scanner and photogrammetric techniques, to the creation of semantically enriched 3D models. The proposed approach is based on the recognition -segmentation and classification- of elements on the original raw point cloud, and on the manual mapping of NURBS elements on it. For this shape recognition process, reference to architectural treatises and vocabularies of classical architecture is a key step. The created building components are finally imported in a H-BIM environment, where they are enriched with semantic information related to historical knowledge, documentary sources and restoration activities.


Author(s):  
J. Zhu ◽  
Y. Xu ◽  
L. Hoegner ◽  
U. Stilla

<p><strong>Abstract.</strong> In this work, we discussed how to directly combine thermal infrared image (TIR) and the point cloud without additional assistance from GCPs or 3D models. Specifically, we propose a point-based co-registration process for combining the TIR image and the point cloud for the buildings. The keypoints are extracted from images and point clouds via primitive segmentation and corner detection, then pairs of corresponding points are identified manually. After that, the estimated camera pose can be computed with EPnP algorithm. Finally, the point cloud with thermal information provided by IR images can be generated as a result, which is helpful in the tasks such as energy inspection, leakage detection, and abnormal condition monitoring. This paper provides us more insight about the probability and ideas about the combining TIR image and point cloud.</p>


Author(s):  
W. Ostrowski ◽  
M. Pilarska ◽  
J. Charyton ◽  
K. Bakuła

Creating 3D building models in large scale is becoming more popular and finds many applications. Nowadays, a wide term “3D building models” can be applied to several types of products: well-known CityGML solid models (available on few Levels of Detail), which are mainly generated from Airborne Laser Scanning (ALS) data, as well as 3D mesh models that can be created from both nadir and oblique aerial images. City authorities and national mapping agencies are interested in obtaining the 3D building models. Apart from the completeness of the models, the accuracy aspect is also important. Final accuracy of a building model depends on various factors (accuracy of the source data, complexity of the roof shapes, etc.). In this paper the methodology of inspection of dataset containing 3D models is presented. The proposed approach check all building in dataset with comparison to ALS point clouds testing both: accuracy and level of details. Using analysis of statistical parameters for normal heights for reference point cloud and tested planes and segmentation of point cloud provides the tool that can indicate which building and which roof plane in do not fulfill requirement of model accuracy and detail correctness. Proposed method was tested on two datasets: solid and mesh model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregor Luetzenburg ◽  
Aart Kroon ◽  
Anders A. Bjørk

AbstractTraditionally, topographic surveying in earth sciences requires high financial investments, elaborate logistics, complicated training of staff and extensive data processing. Recently, off-the-shelf drones with optical sensors already reduced the costs for obtaining a high-resolution dataset of an Earth surface considerably. Nevertheless, costs and complexity associated with topographic surveying are still high. In 2020, Apple Inc. released the iPad Pro 2020 and the iPhone 12 Pro with novel build-in LiDAR sensors. Here we investigate the basic technical capabilities of the LiDAR sensors and we test the application at a coastal cliff in Denmark. The results are compared to state-of-the-art Structure from Motion Multi-View Stereo (SfM MVS) point clouds. The LiDAR sensors create accurate high-resolution models of small objects with a side length > 10 cm with an absolute accuracy of ± 1 cm. 3D models with the dimensions of up to 130 × 15 × 10 m of a coastal cliff with an absolute accuracy of ± 10 cm are compiled. Overall, the versatility in handling outweighs the range limitations, making the Apple LiDAR devices cost-effective alternatives to established techniques in remote sensing with possible fields of application for a wide range of geo-scientific areas and teaching.


2014 ◽  
Vol 703 ◽  
pp. 163-166
Author(s):  
Yuan Yuan Wang ◽  
Jun Zhao ◽  
Fei Li

The cutting location of cutting-edge curves is obtained by the mathematic models of indexable inserts, and based on the softwares of UG and NCSIMUL, The virtual machining platform is realized to simulate the whole processing of grinding. The Entity modelings of indexable inserts are obtained by Boolean operation in virtual environment, and the basis is presented for analyzing accuracy of the mathematic models and the virtual machining platform. Testing efficiency of NC code and reliability of high speed grinding are improved. This method provides precise 3D models which can be used in the followed works such as finite analysis, CNC machining and so on.


2018 ◽  
Vol 8 (2) ◽  
pp. 20170048 ◽  
Author(s):  
M. I. Disney ◽  
M. Boni Vicari ◽  
A. Burt ◽  
K. Calders ◽  
S. L. Lewis ◽  
...  

Terrestrial laser scanning (TLS) is providing exciting new ways to quantify tree and forest structure, particularly above-ground biomass (AGB). We show how TLS can address some of the key uncertainties and limitations of current approaches to estimating AGB based on empirical allometric scaling equations (ASEs) that underpin all large-scale estimates of AGB. TLS provides extremely detailed non-destructive measurements of tree form independent of tree size and shape. We show examples of three-dimensional (3D) TLS measurements from various tropical and temperate forests and describe how the resulting TLS point clouds can be used to produce quantitative 3D models of branch and trunk size, shape and distribution. These models can drastically improve estimates of AGB, provide new, improved large-scale ASEs, and deliver insights into a range of fundamental tree properties related to structure. Large quantities of detailed measurements of individual 3D tree structure also have the potential to open new and exciting avenues of research in areas where difficulties of measurement have until now prevented statistical approaches to detecting and understanding underlying patterns of scaling, form and function. We discuss these opportunities and some of the challenges that remain to be overcome to enable wider adoption of TLS methods.


2011 ◽  
Vol 6 ◽  
pp. 314-322 ◽  
Author(s):  
Paolo Salonia ◽  
Tommaso Leti Messina ◽  
Andrea Marcolongo ◽  
Lorenzo Appolonia

Accessibility to cultural heritage is one of the most important factors in cultural heritage preservation, as it assures knowledge, monitoring, Public Administration management and a wide interest on cultural heritage sites. Nowdays 3D surveys give the geometric basis for an effective artefact reconstruction but most of the times 3D data are not completely and deeply investigated to extract other useful information on historical monuments for their conservation and safeguard. The Cultural Heritage Superintendence of Aosta decided to run a time continual project of monitoring of the Praetorian Roman Gate with the collaboration of the ITABC, CNR of Italy. The Praetorian Roman Gate in Aosta, Italy, of Augustus ages, is one of the most well-known roman monumental gates, it is a double gate with three arches each side, 12 meters high, 20 meters wide, made of pudding stone ashlars, Badoglio, travertine, marble blocks and other stone insertion due to restorations between 1600 and 1950. In years 2000 a final restoration intervention brought the gate at the present state of art, within the frame of a restoration and conservation building site with the purpose of treat the different decay pathologies and conditions. A complete 3D geometric survey campaign has been the first step for the monitoring of the gate morphologic changes and decay progress in time. The main purpose is to collect both quantitative data, related to the geometry of the gate, and the qualitative data, related to the chromatic change on the surface due to the stone decay. The geometric data with colour information permits to associate materials and stone pathologies to chemical or mechanical actions and to understand and analyse superficial decay kinetics. The colours survey will also permit to directly locate on the 3D model areas of different stratigraphic units. The project aims to build a rigorous quantitative-qualitative database so to be uploaded into a GIS. The GIS will become the monitoring main means. Considering the huge dimension of the gate and its urban location a multi-scale approach has been considered. Controlled and free images have been taken from the ground and the top of the gate so to reconstruct all the walls and the upper cover. A topographic survey has been done so to be able to control and relate all the different acquisitions. It has been chosen a Photo Scanner 3D system. It is a photogrammetry-based survey technology for point clouds acquisition and 3D models configuration, from digital images processing. This technology allows to obtain point clouds (xyz coordinates) with RGB information and geometries at different levels of complexity by processing a number of images taken with a limited set of constraints, with the use of a simple acquisition equipment and through an image matching algorithm (ZScan, by Menci Software). Due to the high walls of the arch gates, the higher part has been surveyed with a remote controlled drone (UAV Unmanned Aerial Vehicle) with a digital camera on it, so to take pictures up to the maximum altitude and with different shooting angles ( 90 and 45 degree). This is a new technology which permits to survey inaccessible parts of a high monument with ease and accuracy, by collecting redundant pictures later bound together by an image block algorithm. This paper aims to present the survey experience architectural monuments trough the application of a trifocal quick photogrammetric system, in surveying at different scales and for different purposes.


Sign in / Sign up

Export Citation Format

Share Document