scholarly journals An Accurate Heading Solution using MEMS-based Gyroscope and Magnetometer Integrated System (Preliminary Results)

Author(s):  
M. El-Diasty

An accurate heading solution is required for many applications and it can be achieved by high grade (high cost) gyroscopes (gyros) which may not be suitable for such applications. Micro-Electro Mechanical Systems-based (MEMS) is an emerging technology, which has the potential of providing heading solution using a low cost MEMS-based gyro. However, MEMS-gyro-based heading solution drifts significantly over time. The heading solution can also be estimated using MEMS-based magnetometer by measuring the horizontal components of the Earth magnetic field. The MEMS-magnetometer-based heading solution does not drift over time, but are contaminated by high level of noise and may be disturbed by the presence of magnetic field sources such as metal objects. This paper proposed an accurate heading estimation procedure based on the integration of MEMS-based gyro and magnetometer measurements that correct gyro and magnetometer measurements where gyro angular rates of changes are estimated using magnetometer measurements and then integrated with the measured gyro angular rates of changes with a robust filter to estimate the heading. The proposed integration solution is implemented using two data sets; one was conducted in static mode without magnetic disturbances and the second was conducted in kinematic mode with magnetic disturbances. The results showed that the proposed integrated heading solution provides accurate, smoothed and undisturbed solution when compared with magnetometerbased and gyro-based heading solutions.

2021 ◽  
pp. 002029402110218
Author(s):  
Xufei Cui ◽  
Yibing Li ◽  
Qiuying Wang ◽  
Malek Karaim ◽  
Aboelmagd Noureldin

The integrated INS/magnetometer measurement is widely used in low-cost navigation systems. The integration has proven more effective in suppressing the divergence of heading than relying solely on a magnetometer because this is susceptible to local magnetic field interference, reducing heading accuracy. Magnetometers sense the local magnetic field that may be interfered by the nearby ferromagnetic material or strong electric currents. Hence, the magnetometer must be calibrated in the vehicle before use. When a magnetometer is installed near power components (engines, etc.), soft iron interference can be ignored. In the vehicle’s external environment, the time-varying hard iron interference can reach 100 times the strength of the geomagnetic field, meaning that a magnetometer cannot function efficiently because its accuracy is so reduced. Hence, the constant hard magnetic interference inside the vehicle is mainly concerned in this paper. An INS/Magnetometer heading estimation algorithm based on a two-stage Kalman filter is proposed to solve the problem by combining inertial sensor and magnetometer with attitude information. In the first stage filter, the constant hard iron interference is estimated by setting upward standing the three IMU axes. In the second stage filter, the INS/Magnetometer heading estimation is implemented. Finally, the results show that the algorithm improves the accuracy of vehicle heading calculations.


2019 ◽  
Vol 9 (3) ◽  
pp. 22
Author(s):  
António Roque ◽  
Duarte M. Sousa ◽  
Pedro Sebastião ◽  
Elmano Margato ◽  
Gil Marques

This paper describes an innovative solution for the power supply of a fast field cycling (FFC) nuclear magnetic resonance (NMR) spectrometer considering its low power consumption, portability and low cost. In FFC cores, the magnetic flux density must be controlled in order to perform magnetic flux density cycles with short transients, while maintaining the magnetic flux density levels with high accuracy and homogeneity. Typical solutions in the FFC NMR literature use current control to get the required magnetic flux density cycles, which correspond to an indirect magnetic flux density control. The main feature of this new relaxometer is the direct control of the magnetic flux density instead of the magnet current, in contrast with other equipment available in the market. This feature is a great progress because it improves the performance. With this solution it is possible to compensate magnetic field disturbances and parasitic magnetic fields guaranteeing, among other possibilities, a field control below the earth magnetic field. Experimental results validating the developed solution and illustrating the real operation of this type of equipment are shown.


2019 ◽  
Vol 8 (4) ◽  
pp. 169 ◽  
Author(s):  
Shady Zahran ◽  
Adel Moussa ◽  
Naser El-Sheimy

The last decade has witnessed a wide spread of small drones in many civil and military applications. With the massive advancement in the manufacture of small and lightweight Inertial Navigation System (INS), navigation in challenging environments became feasible. Navigation of these small drones mainly depends on the integration of Global Navigation Satellite Systems (GNSS) and INS. However, the navigation performance of these small drones deteriorates quickly when the GNSS signals are lost, due to accumulated errors of the low-cost INS that is typically used in these drones. During GNSS signal outages, another aiding sensor is required to bound the drift exhibited by the INS. Before adding any additional sensor on-board the drones, there are some limitations that must be taken into considerations. These limitations include limited availability of power, space, weight, and size. This paper presents a novel unconventional method, to enhance the navigation of autonomous drones in GNSS denied environment, through a new utilization of hall effect sensor to act as flying odometer “Air-Odo” and vehicle dynamic model (VDM) for heading estimation. The proposed approach enhances the navigational solution by estimating the unmanned aerial vehicle (UAV) velocity, and heading and fusing these measurements in the Extended Kalman Filter (EKF) of the integrated system.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Da Liu ◽  
Shufang Zhang ◽  
Jingbo Zhang

Global positioning system (GPS) and inertial navigation system (INS) are commonly combined to overcome disadvantages of each and constitute an integrated system that realizes long-term precision. However, the performance of the integrated system deteriorates on which GPS is unavailable. Especially when low-cost inertial sensors based on the microelectromechanical system (MEMS) are used, performance of the integrated system degrades severely over time. In this study, in order to minimize the adverse impact of high-level stochastic noise from low-cost MEMS sensors, denoising technology based on empirical mode decomposition (EMD) is employed to improve signal quality before navigation solution by which significant improvement of removing noise is achieved. Moreover, a random vector functional link (RVFL) network-based fusion algorithm is presented to estimate and compensate position error during GPS outage such that error accumulation is suppressed quickly when INS is working standalone. Performance of the proposed approach is evaluated by experimental results. It is indicated from comparison that the proposed algorithm takes advantages such as better accuracy and lower complexity and is more robust than the commonly reported methods and is more appropriate for real-time and low-cost application.


2021 ◽  
Vol 15 (03) ◽  
pp. 313-335
Author(s):  
Mojtaba Karimi ◽  
Edwin Babaians ◽  
Martin Oelsch ◽  
Eckehard Steinbach

Robust attitude and heading estimation in an indoor environment with respect to a known reference are essential components for various robotic applications. Affordable Attitude and Heading Reference Systems (AHRS) are typically using low-cost solid-state MEMS-based sensors. The precision of heading estimation on such a system is typically degraded due to the encountered drift from the gyro measurements and distortions of the Earth’s magnetic field sensing. This paper presents a novel approach for robust indoor heading estimation based on skewed redundant inertial and magnetic sensors. Recurrent Neural Network-based (RNN) fusion is used to perform robust heading estimation with the ability to compensate for the external magnetic field anomalies. We use our previously described correlation-based filter model for preprocessing the data and for empowering perturbation mitigation. Our experimental results show that the proposed scheme is able to successfully mitigate the anomalies in the saturated indoor environment and achieve a Root-Mean-Square Error of less than [Formula: see text] for long-term use.


Author(s):  
Fuad A.F. Saleh ◽  
Ramzi N.A. Saif ◽  
Dina M.A. Murshed ◽  
Basheer A.M. Abdulmageed

Throughout the ages and times, the need to use everything that reflects women's beauty and helps them maintain their vision and health, and if the need to use the precious materials has been put in place, it is important that they produce the desired results without attention to the harmful chemicals and heavy metals that they contain. Over time, the toxicity of these heavy metals increases in our environment because of their long-term exposure to these pollutants, whether low or high-level in toxicity, animal-prednmost, environment, including air we breathe, water, food, etc. Cosmetics are one of these sources through which humans are exposed to heavy toxic metals. Heavy metals have been estimated in a number of previous studies, and in our study here, we aim to estimate the amount of cadmium metal and study it in various cosmetics such as Lipstick, Eye shadow, Face whitening cream. Two samples were taken from each of the locomoys and cadmium was estimated using the photometer of atomic absorption, one of the samples being expensive and the other low-cost, and purchased from the wholesale markets of Taiz City. Cadmium has been found prominently in these products and the highest rate found in the lowest cost-effective, Eye shadow, that the use of these cosmetic products exposes users to low- conc. heavy metals, which may pose a danger to their health. They are known to be clustered in their biological systems over time, resulting in an imbalance of body and environment. The results found that the low-priced color samples contained a higher concentration of cadmium than the high-price samples in low-priced samples, cadmium concentration was in order of eye shadow > lipstick = face whitening cream. The similar pattern are shown also for higher price product, which are lipstick > face whitening cream > eye shadow.


2020 ◽  
Vol 12 (11) ◽  
pp. 4460 ◽  
Author(s):  
Mohammadsoroush Tafazzoli ◽  
Ehsan Mousavi ◽  
Sharareh Kermanshachi

Although the two concepts of lean and sustainable construction have been developed due to different incentives, and they do not pursue the same exact goals, there exists considerable commonality between them. This paper discusses the potentials for integrating the two approaches and their practices and how the resulting synergy from combining the two methods can potentially lead to higher levels of fulfilling the individual goals of each of them. Some limitations and challenges to implementing the integrated approach are also discussed. Based on a comprehensive review of existing papers related to sustainable and lean construction topics, the commonality between the two approaches is discussed and grouped in five categories of (1) cost savings, (2) waste minimization, (3) Jobsite safety improvement, (4) reduced energy consumption, and (5) customers’ satisfaction improvement. The challenges of this integration are similarly identified and discussed in the four main categories of (1) additional initial costs to the project, (2) difficulty of providing specialized expertise, (3) contractors’ unwillingness to adopt the additional requirements, and (4) challenges to establish a high level of teamwork. Industry professionals were then interviewed to rank the elements in each of the two categories of opportunities and challenges. The results of the study highlight how future research can pursue the development of a new Green-Lean approach by investing in the communalities and meeting the challenges of this integration.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Marceline F. Finda ◽  
Fredros O. Okumu ◽  
Elihaika Minja ◽  
Rukiyah Njalambaha ◽  
Winfrida Mponzi ◽  
...  

Abstract Background Different forms of mosquito modifications are being considered as potential high-impact and low-cost tools for future malaria control in Africa. Although still under evaluation, the eventual success of these technologies will require high-level public acceptance. Understanding prevailing community perceptions of mosquito modification is, therefore, crucial for effective design and implementation of these interventions. This study investigated community perceptions regarding genetically-modified mosquitoes (GMMs) and their potential for malaria control in Tanzanian villages where no research or campaign for such technologies has yet been undertaken. Methods A mixed-methods design was used, involving: (i) focus group discussions (FGD) with community leaders to get insights on how they frame and would respond to GMMs, and (ii) structured questionnaires administered to 490 community members to assess awareness, perceptions and support for GMMs for malaria control. Descriptive statistics were used to summarize the findings and thematic content analysis was used to identify key concepts and interpret the findings. Results Nearly all survey respondents were unaware of mosquito modification technologies for malaria control (94.3%), and reported no knowledge of their specific characteristics (97.3%). However, community leaders participating in FGDs offered a set of distinctive interpretive frames to conceptualize interventions relying on GMMs for malaria control. The participants commonly referenced their experiences of cross-breeding for selecting preferred traits in domestic plants and animals. Preferred GMMs attributes included the expected reductions in insecticide use and human labour. Population suppression approaches, requiring as few releases as possible, were favoured. Common concerns included whether the GMMs would look or behave differently than wild mosquitoes, and how the technology would be integrated into current malaria control policies. The participants emphasised the importance and the challenge of educating and engaging communities during the technology development. Conclusions Understanding how communities perceive and interpret novel technologies is crucial to the design and effective implementation of new vector control programmes. This study offers vital clues on how communities with no prior experience of modified mosquitoes might conceptualize or respond to such technologies when deployed in the context of malaria control programmes. Drawing upon existing interpretive frames and locally-resonant analogies when deploying such technologies may provide a basis for more durable public support in the future.


Sign in / Sign up

Export Citation Format

Share Document