scholarly journals Hybrid mosquitoes? Evidence from rural Tanzania on how local communities conceptualize and respond to modified mosquitoes as a tool for malaria control

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Marceline F. Finda ◽  
Fredros O. Okumu ◽  
Elihaika Minja ◽  
Rukiyah Njalambaha ◽  
Winfrida Mponzi ◽  
...  

Abstract Background Different forms of mosquito modifications are being considered as potential high-impact and low-cost tools for future malaria control in Africa. Although still under evaluation, the eventual success of these technologies will require high-level public acceptance. Understanding prevailing community perceptions of mosquito modification is, therefore, crucial for effective design and implementation of these interventions. This study investigated community perceptions regarding genetically-modified mosquitoes (GMMs) and their potential for malaria control in Tanzanian villages where no research or campaign for such technologies has yet been undertaken. Methods A mixed-methods design was used, involving: (i) focus group discussions (FGD) with community leaders to get insights on how they frame and would respond to GMMs, and (ii) structured questionnaires administered to 490 community members to assess awareness, perceptions and support for GMMs for malaria control. Descriptive statistics were used to summarize the findings and thematic content analysis was used to identify key concepts and interpret the findings. Results Nearly all survey respondents were unaware of mosquito modification technologies for malaria control (94.3%), and reported no knowledge of their specific characteristics (97.3%). However, community leaders participating in FGDs offered a set of distinctive interpretive frames to conceptualize interventions relying on GMMs for malaria control. The participants commonly referenced their experiences of cross-breeding for selecting preferred traits in domestic plants and animals. Preferred GMMs attributes included the expected reductions in insecticide use and human labour. Population suppression approaches, requiring as few releases as possible, were favoured. Common concerns included whether the GMMs would look or behave differently than wild mosquitoes, and how the technology would be integrated into current malaria control policies. The participants emphasised the importance and the challenge of educating and engaging communities during the technology development. Conclusions Understanding how communities perceive and interpret novel technologies is crucial to the design and effective implementation of new vector control programmes. This study offers vital clues on how communities with no prior experience of modified mosquitoes might conceptualize or respond to such technologies when deployed in the context of malaria control programmes. Drawing upon existing interpretive frames and locally-resonant analogies when deploying such technologies may provide a basis for more durable public support in the future.

2021 ◽  
Author(s):  
Marceline Francis Finda ◽  
Fredros Oketch Okumu ◽  
Elihaika Minja ◽  
Rukiyah Njalambaha ◽  
Winnfrida Mponzi ◽  
...  

Abstract Background: Different forms of mosquito modification are being considered as potential high-impact and low-cost tools for future malaria control in Africa. Although still under evaluation, the eventual success of these technologies will require high-level public acceptance. Understanding prevailing community perceptions of mosquito modification is therefore crucial for effective design and implementation of these interventions. This study investigated community perceptions regarding genetically-modified mosquitoes (GMMs) and their potential for malaria control in Tanzanian villages where no research or campaign for such technologies has yet been undertaken.Methods: A mixed-methods design was used, involving: i) focus group discussions (FGD) with community leaders to get insights on how they frame and would respond to GMMs, and ii) structured questionnaires administered to 490 community members to assess awareness, perceptions and support for GMMs for malaria control. Descriptive statistics were used to summarize the findings and thematic content analysis was used to identify key concepts and interpret the findings. Results: Nearly all survey respondents were unaware of mosquito modification technologies for malaria control (94.3%), and reported no knowledge of their specific characteristics (97.3%). However, community leaders participating in FGDs offered a set of distinctive interpretive frames to conceptualize interventions relying on GMMs for malaria control. The participants commonly referenced their experiences of cross-breeding for selecting preferred traits in domestic plants and animals. Preferred GMMs attributes included the expected reductions in insecticide use and human labour. Population suppression approaches, requiring as few releases as possible, were favoured. Common concerns included whether the GMMs would look or behave differently than wild mosquitoes, and how the technology would be integrated into current malaria control policies. The participants emphasised the importance and the challenge of educating and engaging communities during the technology development. Conclusion: Understanding how communities perceive and interpret novel technologies is crucial to the design and effective implementation of new vector control programs. This study offers vital clues on how communities with no prior experience of modified mosquitoes might conceptualize or respond to such technologies when deployed in the context of malaria control programs. Drawing upon existing interpretive frames and locally-resonant analogies when deploying such technologies may provide a basis for more durable public support in the future.


2020 ◽  
Author(s):  
Marceline Francis Finda ◽  
Fredros Oketch Okumu ◽  
Elihaika Minja ◽  
Rukiyah Njalambaha ◽  
Winnfrida Mponzi ◽  
...  

Abstract BackgroundDifferent forms of mosquito modification are being considered as potential high-impact and low-cost approaches to future malaria control in Africa. Though still under evaluation, the eventual success of these technologies will require high-level public acceptance. Understanding the prevailing community perceptions is therefore crucial for effective public engagement during implementation. This study investigated community perceptions regarding genetically-modified mosquitoes (GMMs) and their potential for malaria control, in Tanzanian villages where no research or campaigns about such technologies have previously been undertaken. MethodsA mixed-methods design was used, involving: i) structured questionnaires administered to 490 community members to assess awareness, perceptions and support for GMMs, and ii) focus group discussions (FGD) with community leaders to explore in greater depth how these communities frame and would respond to GMMs. Thematic content analysis was used to identify key concepts and interpret the findings. ResultsNearly all survey respondents were unaware of mosquito modification technologies for malaria control (94.3%), and reported no knowledge of their specific characteristics (97.3%). However, community leaders participating in FGDs offered a set of distinctive interpretive frames to conceptualize interventions relying on GMMs for malaria control. The participants commonly referenced their experiences of cross-breeding for selecting preferred traits in domestic plants and animals. Preferred GMMs attributes included expected reductions in insecticide use and human labour. Population suppression approaches, requiring as few releases as possible, were favored. Common concerns included whether the GMMs would look or behave differently than wild mosquitoes, and how the technology would be integrated into current malaria control policies. The participants emphasised the importance, and the challenges, of educating and engaging communities during technology development. ConclusionUnderstanding how communities perceive and interpret new technologies is crucial in designing effective implementation strategies that enjoy durable public support. This study offers vital clues on how communities with no prior experience of modified mosquitoes might conceptualize or respond to such technologies when deployed in the context of malaria control programs. The existing interpretive frames and the real-life analogies, such as cross-breeding, may provide a basis for effective community engagement to aid the potential deployment of such technologies in the future.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ana Alvarez-Fernandez ◽  
María J. Bernal ◽  
Isabel Fradejas ◽  
Alexandra Martin Ramírez ◽  
Noor Azian Md Yusuf ◽  
...  

Abstract Background The emergence and spread of anti-malarial resistance continues to hinder malaria control. Plasmodium falciparum, the species that causes most human malaria cases and most deaths, has shown resistance to almost all known anti-malarials. This anti-malarial resistance arises from the development and subsequent expansion of Single Nucleotide Polymorphisms (SNPs) in specific parasite genes. A quick and cheap tool for the detection of drug resistance can be crucial and very useful for use in hospitals and in malaria control programmes. It has been demonstrated in different contexts that genotyping by Kompetitive Allele Specific PCR (KASP), is a simple, fast and economical method that allows a high-precision biallelic characterization of SNPs, hence its possible utility in the study of resistance in P. falciparum. Methods Three SNPs involved in most cases of resistance to the most widespread anti-malarial treatments have been analysed by PCR plus sequencing and by KASP (C580Y of the Kelch13 gene, Y86N of the Pfmdr1 gene and M133I of the Pfcytb gene). A total of 113 P. falciparum positive samples and 24 negative samples, previously analysed by PCR and sequencing, were selected for this assay. Likewise, the samples were genotyped for the MSP-1 and MSP-2 genes, and the Multiplicity of Infection (MOI) and parasitaemia were measured to observe their possible influence on the KASP method. Results The KASP results showed the same expected mutations and wild type genotypes as the reference method, with few exceptions that correlated with very low parasitaemia samples. In addition, two cases of heterozygotes that had not been detected by sequencing were found. No correlation was found between the MOI or parasitaemia and the KASP values of the sample. The reproducibility of the technique shows no oscillations between repetitions in any of the three SNPs analysed. Conclusions The KASP assays developed in this study were efficient and versatile for the determination of the Plasmodium genotypes related to resistance. The method is simple, fast, reproducible with low cost in personnel, material and equipment and scalable, being able to core KASP arrays, including numerous SNPs, to complete the main pattern of mutations associated to P. falciparum resistance.


Author(s):  
Justin Parkhurst ◽  
Ludovica Ghilardi ◽  
Jayne Webster ◽  
Robert W Snow ◽  
Caroline A Lynch

Abstract This article explores how malaria control in sub-Saharan Africa is shaped in important ways by political and economic considerations within the contexts of aid-recipient nations and the global health community. Malaria control is often assumed to be a technically driven exercise: the remit of public health experts and epidemiologists who utilize available data to select the most effective package of activities given available resources. Yet research conducted with national and international stakeholders shows how the realities of malaria control decision-making are often more nuanced. Hegemonic ideas and interests of global actors, as well as the national and global institutional arrangements through which malaria control is funded and implemented, can all influence how national actors respond to malaria. Results from qualitative interviews in seven malaria-endemic countries indicate that malaria decision-making is constrained or directed by multiple competing objectives, including a need to balance overarching global goals with local realities, as well as a need for National Malaria Control Programmes to manage and coordinate a range of non-state stakeholders who may divide up regions and tasks within countries. Finally, beyond the influence that political and economic concerns have over programmatic decisions and action, our analysis further finds that malaria control efforts have institutionalized systems, structures and processes that may have implications for local capacity development.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Sarah Hartley ◽  
Robert D. J. Smith ◽  
Adam Kokotovich ◽  
Chris Opesen ◽  
Tibebu Habtewold ◽  
...  

Abstract Background The African Union’s High-Level Panel on Emerging Technologies identified gene drive mosquitoes as a priority technology for malaria elimination. The first field trials are expected in 5–10 years in Uganda, Mali or Burkina Faso. In preparation, regional and international actors are developing risk governance guidelines which will delineate the framework for identifying and evaluating risks. Scientists and bioethicists have called for African stakeholder involvement in these developments, arguing the knowledge and perspectives of those people living in malaria-afflicted countries is currently missing. However, few African stakeholders have been involved to date, leaving a knowledge gap about the local social-cultural as well as ecological context in which gene drive mosquitoes will be tested and deployed. This study investigates and analyses Ugandan stakeholders’ hopes and concerns about gene drive mosquitoes for malaria control and explores the new directions needed for risk governance. Methods This qualitative study draws on 19 in-depth semi-structured interviews with Ugandan stakeholders in 2019. It explores their hopes for the technology and the risks they believed pertinent. Coding began at a workshop and continued through thematic analysis. Results Participants’ hopes and concerns for gene drive mosquitoes to address malaria fell into three themes: (1) ability of gene drive mosquitoes to prevent malaria infection; (2) impacts of gene drive testing and deployment; and, (3) governance. Stakeholder hopes fell almost exclusively into the first theme while concerns were spread across all three. The study demonstrates that local stakeholders are able and willing to contribute relevant and important knowledge to the development of risk frameworks. Conclusions International processes can provide high-level guidelines, but risk decision-making must be grounded in the local context if it is to be robust, meaningful and legitimate. Decisions about whether or not to release gene drive mosquitoes as part of a malaria control programme will need to consider the assessment of both the risks and the benefits of gene drive mosquitoes within a particular social, political, ecological, and technological context. Just as with risks, benefits—and importantly, the conditions that are necessary to realize them—must be identified and debated in Uganda and its neighbouring countries.


Author(s):  
William R. Wilson ◽  
Laura L. Jones ◽  
Mason A. Peck

In the past several years, small satellites have taken on an increasingly important role as affordable technology demonstrators and are now being viewed as viable low-cost platforms for traditional spacecraft mission objectives. As such, the CubeSat standard (1 kg in a 10 cm cube) has been widely adopted for university-led development efforts even as it is embraced by traditional spacecraft developers, such as NASA. As CubeSats begin to take on roles traditionally filled by much larger spacecraft, the infrastructure for dynamics and controls testing must also transition to accommodate the different size and cost scaling associated with CubeSats. While air-bearing-based testbeds are commonly used to enable a variety of traditional ground testing and development for spacecraft, few existing designs are suitable for development of CubeSat-scale technologies, particularly involving multibody dynamics. This work describes Cornell University's FloatCube testbed, which provides a planar reduced-friction environment for multibody dynamics and controls technology development for spacecraft less than 6 kg and a 15 cm cube. The multimodule testbed consists of four free-floating air-bearing platforms with on-board gas supplies that allow the platforms to float over a glass surface without external attachments. Each of these platforms, or FloatCubes, can host CubeSat-sized payloads at widely ranging levels of development, from prototype components to full-scale systems. The FloatCube testbed has already hosted several successful experiments, proving its ability to provide an affordable reduced-friction environment to CubeSat-scale projects. This paper provides information on the system design, cost, performance, operating procedures, and applications of this unique, and increasingly relevant, testbed.


1984 ◽  
Vol 106 (4) ◽  
pp. 287-291
Author(s):  
H. F. Brose

Renewed interest and planning for a Space Station, probably NASA’s next major space activity, poses a new challenge for ETCLS technology not previously emphasized. Over the past two decades, regenerative life support technology development for Space Station has been underway. This development effort was always aimed at regenerative (closed loop) life support for a full capability Space Station. The level of priority for manned space presence and current budgetary pressures dictate the need for a low cost profile program with an evolutionary growth Space Station. The initial capability may be a small station with a crew of 2 or 3. This station could grow in size and capability by the addition of modules to a station with a crew of 8 to 12 with the possibility of multiple stations in orbit. Depending upon the selected missions, the early station may be best served by an open or only partially closed loop ETCLS whereas the final station may need a completely closed loop ETCLS. The challenge would be to grow in-orbit the ETCLS system capability in a “no-throw-away” fashion in order to minimize annual and total program cost. This paper discusses a possible ETCLS system evolutionary growth scenario, the Space Station architecture variations influencing the ETCLS system design, and a technology preparedness plan for Space Station ETCLS.


2021 ◽  
pp. 1-13
Author(s):  
Yang GAO ◽  
Xiang GAO

With knowledge perspective of industrial technology, in this paper we propose fast ranking score decision making model based on Fuzzy integrated TOPSIS approach to determine economic growth rate of manufacturing industry in China. This research focuses on driving effects of China’s productive service industry on manufacturing technology innovation. The research results show that the manufacturer service industry takes a high level of information diffusion for the manufacturing industry. It transmits a large amount of diverse information through the unconstrained relationship with the manufacturing industry, thereby forming the economic network with proposed Fuzzy integrated TOPSIS economy ranking (FITER) model and improve the development level of the manufacturing industry. We evaluate the performance of proposed FITER model by comparing ranking score of different manufacturing industry with different existing decision making mode and demonstrate that proposed model represent best ranking score in comparison to existing approach. Result from data analysis motivates driving effect of production services on the technological innovation of manufacturing and sub-sectors. It is found that the innovation and technological advancement in the production industry of services takes drive the overall expansion level of the business industry, as well as make the manufacturing industry the strongest.


2016 ◽  
Author(s):  
Iain Lunney

ABSTRACT In a cost-sensitive market driven by depressed commodity prices, significant capital challenges exist for operators interested in pursuing exploration activities in remote environments to define their producible reserves. This paper explores the organizational and operational model developed by a service company over several remote area mobilizations; this model resulted in an optimized low-cost service delivery model characterized by top quartile operational key performance indicators (KPIs). The model centralizes critical functions of an operational organization into discrete service units that are located near the operational location or that provide remote assistance with communication and reporting lines in place to function effectively. Top quartile operational performance and tool availability is a result of placing a remote repair and maintenance facility that includes containerized specialty modules near the operational area. The upfront bottomhole assembly engineering, 24/7 monitoring, and proactive feedback of logged data, drillstring dynamics, and wellbore hydraulics are performed by a core team of subject matter experts in their respective disciplines from an established centralized operating center. The operational KPIs over the course of the six well exploration campaign provided substantial evidence to support the reliability of the model and the high level of experience used in both the remote maintenance facility and the operations center support team.


Sign in / Sign up

Export Citation Format

Share Document