scholarly journals CHANGE DETECTION WITH MULTI-SOURCE DEFECTIVE REMOTE SENSING IMAGES BASED ON EVIDENTIAL FUSION

Author(s):  
Xi Chen ◽  
Jing Li ◽  
Yunfei Zhang ◽  
Liangliang Tao

Remote sensing images with clouds, shadows or stripes are usually considered as defective data which limit their application for change detection. This paper proposes a method to fuse a series of defective images as evidences for change detection. In the proposed method, post-classification comparison process is firstly performed on multi-source defective images. Then, the classification results of all the images, together with their corresponding confusion matrixes are used to calculate the Basic Belief Assignment (BBA) of each pixel. Further, based on the principle of Dempster-Shafer evidence theory, a BBA redistribution process is introduced to deal with the defective parts of multi-source data. At last, evidential fusion and decision making rules are applied on the pixel level, and the final map of change detection can be derived. The proposed method can finish change detection with data fusion and image completion in one integrated process, which makes use of the complementary and redundant information from the input images. The method is applied to a case study of landslide barrier lake formed in Aug. 3rd, 2014, with a series of multispectral images from different sensors of GF-1 satellite. Result shows that the proposed method can not only complete the defective parts of the input images, but also provide better change detection accuracy than post-classification comparison method with single pair of pre- and post-change images. Subsequent analysis indicates that high conflict degree between evidences is the main source of errors in the result. Finally, some possible reasons that result in evidence conflict on the pixel level are analysed.

Author(s):  
Xi Chen ◽  
Jing Li ◽  
Yunfei Zhang ◽  
Liangliang Tao

Remote sensing images with clouds, shadows or stripes are usually considered as defective data which limit their application for change detection. This paper proposes a method to fuse a series of defective images as evidences for change detection. In the proposed method, post-classification comparison process is firstly performed on multi-source defective images. Then, the classification results of all the images, together with their corresponding confusion matrixes are used to calculate the Basic Belief Assignment (BBA) of each pixel. Further, based on the principle of Dempster-Shafer evidence theory, a BBA redistribution process is introduced to deal with the defective parts of multi-source data. At last, evidential fusion and decision making rules are applied on the pixel level, and the final map of change detection can be derived. The proposed method can finish change detection with data fusion and image completion in one integrated process, which makes use of the complementary and redundant information from the input images. The method is applied to a case study of landslide barrier lake formed in Aug. 3rd, 2014, with a series of multispectral images from different sensors of GF-1 satellite. Result shows that the proposed method can not only complete the defective parts of the input images, but also provide better change detection accuracy than post-classification comparison method with single pair of pre- and post-change images. Subsequent analysis indicates that high conflict degree between evidences is the main source of errors in the result. Finally, some possible reasons that result in evidence conflict on the pixel level are analysed.


Author(s):  
Xiaodan Shi ◽  
Guorui Ma ◽  
Fenge Chen ◽  
Yanli Ma

This paper presents a kernel-based approach for the change detection of remote sensing images. It detects change by comparing the probability density (PD), expressed as kernel functions, of the feature vector extracted from bi- temporal images. PD is compared by defined kernel functions without immediate PD estimation. This algorithm is model-free and it can process multidimensional data, and is fit for the images with rich texture in particular. Experimental results show that overall accuracy of the algorithm is 98.9 %, a little bit better than that of the change vector analysis and classification comparison method, which is 96.7 % and 95.9 % respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Liang Huang ◽  
Qiuzhi Peng ◽  
Xueqin Yu

In order to improve the change detection accuracy of multitemporal high spatial resolution remote-sensing (HSRRS) images, a change detection method of multitemporal remote-sensing images based on saliency detection and spatial intuitionistic fuzzy C-means (SIFCM) clustering is proposed. Firstly, the cluster-based saliency cue method is used to obtain the saliency maps of two temporal remote-sensing images; then, the saliency difference is obtained by subtracting the saliency maps of two temporal remote-sensing images; finally, the SIFCM clustering algorithm is used to classify the saliency difference image to obtain the change regions and unchange regions. Two data sets of multitemporal high spatial resolution remote-sensing images are selected as the experimental data. The detection accuracy of the proposed method is 96.17% and 97.89%. The results show that the proposed method is a feasible and better performance multitemporal remote-sensing image change detection method.


2021 ◽  
Vol 2078 (1) ◽  
pp. 012040
Author(s):  
Zhenliang Chang ◽  
Xiaogang Yang ◽  
Ruitao Lu ◽  
Hao Zhuang ◽  
Pan Huang

Abstract The detection accuracy of traditional change detection algorithms is seriously affected by the low accuracy and high rate of omission, the radiometric correction accuracy, and the classification threshold for difference image. A change detection method based on image segmentation and image matching was proposed for remote sensing images. In this method, super-pixel-based dimension reduction SLIC image segmentation algorithm and SURF algorithms were used. The homogeneous region was used as the segmentation standard, and the homogeneity method was proposed to suppress the impact of inconsistent image segmentation on the change detection results. The experimental results show that this method improves the accuracy of remote sensing image change detection, has good robustness to the problem of redundant data, significantly reduces the error detection rate of image change detection, and can effectively accelerate the speed of change detection.


Sign in / Sign up

Export Citation Format

Share Document