scholarly journals Comparison of field and airborne laser scanning based crown cover estimates across land cover types in Kenya

Author(s):  
J. Heiskanen ◽  
L. Korhonen ◽  
J. Hietanen ◽  
V. Heikinheimo ◽  
E. Schäfer ◽  
...  

Tree crown cover (CC) provides means for the continuous land cover characterization of complex tropical landscapes with multiple land uses and variable degrees of degradation. It is also a key parameter in the international forest definitions that are basis for monitoring global forest cover changes. Recently, airborne laser scanning (ALS) has emerged as a practical method for accurate CC mapping, but ALS derived CC estimates have rarely been assessed with field data in the tropics. Here, our objective was to compare the various field and ALS based CC estimates across multiple land cover types in the Taita Hills, Kenya. The field data was measured from a total of 178 sample plots (0.1 ha) in 2013 and 2014. The most accurate field measurement method, line intersect sampling using Cajanus tube, was used in 37 plots. Other methods included CC estimate based on the tree inventory data (144 plots), crown relascope (43 plots) and hemispherical photography (30 plots). Three ALS data sets, including two scanners and flying heights, were acquired concurrently with the field data collection. According to the results, the first echo cover index (FCI) from ALS data had good agreement with the most accurate field based CC estimates (RMSD 7.1% and 2.7% depending on the area and scan). The agreement with other field based methods was considerably worse. Furthermore, we observed that ALS cover indices were robust between the different scans in the overlapping area. In conclusion, our results suggest that ALS provides a reliable method for continuous CC mapping across tropical land cover types although dense shrub layer and tree-like herbaceous plants can cause overestimation of CC.

2020 ◽  
Vol 12 (10) ◽  
pp. 1681
Author(s):  
Bingxiao Wu ◽  
Guang Zheng ◽  
Weimin Ju

Laser return intensity (LRI) information obtained from airborne laser scanning (ALS) data has been used to classify land cover types and to reveal canopy physiological features. However, the sensor-related and environmental parameters may introduce noise. In this study, we developed a local median filtering (LMF) method to point-by-point correct the LRI information. For each point, we deduced the reference variation range for its LRI. Then, we replaced the outliers of LRI with their local median values. To evaluate the LMF method, we assessed the discrepancy of LRI information from the same and diverse land cover types. Moreover, we used the corrected LRI to distinguish points from grass, road, and bare land, which were classified as ground type in ALS data. The results show that using the LMF method could increase the similarity of pointwise LRI from the same land cover type and the discrepancy of those from different kinds of targets. Using the LMF-corrected LRI could improve the overall classification accuracy of three land cover types by about 3% (all over 81%, κ ≥ 0.73, p < 0.05), compared to those using the original and range-normalized LRI. The sensor-related metrics brought more noise to the original LRI information than the environmental factors. Using the LMF method could effectively correct LRI information from historical ALS datasets.


2021 ◽  
Author(s):  
S M Nazmuz Sakib

LIDAR data has proved useful in recent years since it gives information such as item height and attributes, statistics over large regions, and it all becomes available by capturing the intensity of backscattered pulses in addition to 3D coordinates. “A LiDAR may generate a 2D angle image as well as a 3D picture containing angle/angle/range information. A LiDAR can directly measure range in each pixel since it controls when light is emitted, allowing it to calculate range based on the time of flight (ToF) to and from the object in a particular pixel. If there is enough signal, a 3D picture can also have grayscale and colour”. Coherent LiDAR can detect velocity quite precisely. Brief descriptions of airborne laser scanning technology [also known as "light detection and ranging" (LIDAR)] and research findings on its application in forest assessment and monitoring are included. Many airborne laser scanning missions are being flown with terrain mapping requirements, leading to data sets that are missing important data for vegetation evaluation. As a result, standards and criteria for airborne laser scanning missions are needed to guarantee that they are used for vegetation measurement and monitoring instead of merely landscape mapping (e.g., delivery of all return data with reflection intensity).


2015 ◽  
Vol 36 (9) ◽  
pp. 2421-2437 ◽  
Author(s):  
Wioleta Błaszczak-Bąk ◽  
Artur Janowski ◽  
Waldemar Kamiński ◽  
Jacek Rapiński

Author(s):  
K. Bakuła ◽  
P. Kupidura ◽  
Ł. Jełowicki

Multispectral Airborne Laser Scanning provides a new opportunity for airborne data collection. It provides high-density topographic surveying and is also a useful tool for land cover mapping. Use of a minimum of three intensity images from a multiwavelength laser scanner and 3D information included in the digital surface model has the potential for land cover/use classification and a discussion about the application of this type of data in land cover/use mapping has recently begun. In the test study, three laser reflectance intensity images (orthogonalized point cloud) acquired in green, near-infrared and short-wave infrared bands, together with a digital surface model, were used in land cover/use classification where six classes were distinguished: water, sand and gravel, concrete and asphalt, low vegetation, trees and buildings. In the tested methods, different approaches for classification were applied: spectral (based only on laser reflectance intensity images), spectral with elevation data as additional input data, and spectro-textural, using morphological granulometry as a method of texture analysis of both types of data: spectral images and the digital surface model. The method of generating the intensity raster was also tested in the experiment. Reference data were created based on visual interpretation of ALS data and traditional optical aerial and satellite images. The results have shown that multispectral ALS data are unlike typical multispectral optical images, and they have a major potential for land cover/use classification. An overall accuracy of classification over 90% was achieved. The fusion of multi-wavelength laser intensity images and elevation data, with the additional use of textural information derived from granulometric analysis of images, helped to improve the accuracy of classification significantly. The method of interpolation for the intensity raster was not very helpful, and using intensity rasters with both first and last return numbers slightly improved the results.


Author(s):  
K. Bakuła ◽  
P. Kupidura ◽  
Ł. Jełowicki

Multispectral Airborne Laser Scanning provides a new opportunity for airborne data collection. It provides high-density topographic surveying and is also a useful tool for land cover mapping. Use of a minimum of three intensity images from a multiwavelength laser scanner and 3D information included in the digital surface model has the potential for land cover/use classification and a discussion about the application of this type of data in land cover/use mapping has recently begun. In the test study, three laser reflectance intensity images (orthogonalized point cloud) acquired in green, near-infrared and short-wave infrared bands, together with a digital surface model, were used in land cover/use classification where six classes were distinguished: water, sand and gravel, concrete and asphalt, low vegetation, trees and buildings. In the tested methods, different approaches for classification were applied: spectral (based only on laser reflectance intensity images), spectral with elevation data as additional input data, and spectro-textural, using morphological granulometry as a method of texture analysis of both types of data: spectral images and the digital surface model. The method of generating the intensity raster was also tested in the experiment. Reference data were created based on visual interpretation of ALS data and traditional optical aerial and satellite images. The results have shown that multispectral ALS data are unlike typical multispectral optical images, and they have a major potential for land cover/use classification. An overall accuracy of classification over 90% was achieved. The fusion of multi-wavelength laser intensity images and elevation data, with the additional use of textural information derived from granulometric analysis of images, helped to improve the accuracy of classification significantly. The method of interpolation for the intensity raster was not very helpful, and using intensity rasters with both first and last return numbers slightly improved the results.


2021 ◽  
Author(s):  
Jakob J. Assmann ◽  
Jesper E. Moeslund ◽  
Urs A. Treier ◽  
Signe Normand

Abstract. Biodiversity studies could strongly benefit from three-dimensional data on ecosystem structure derived from contemporary remote sensing technologies, such as Light Detection and Ranging (LiDAR). Despite the increasing availability of such data at regional and national scales, the average ecologist has been limited in accessing them due to high requirements on computing power and remote-sensing knowledge. We processed Denmark's publicly available national Airborne Laser Scanning (ALS) data set acquired in 2014/15 together with the accompanying elevation model to compute 70 rasterized descriptors of interest for ecological studies. With a grain size of 10 m, these data products provide a snapshot of high-resolution measures including vegetation height, structure and density, as well as topographic descriptors including elevation, aspect, slope and wetness across more than forty thousand square kilometres covering almost all of Denmark's terrestrial surface. The resulting data set is comparatively small (~ 87 GB, compressed 16.4 GB) and the raster data can be readily integrated into analytical workflows in software familiar to many ecologists (GIS software, R, Python). Source code and documentation for the processing workflow are openly available via a code repository, allowing for transfer to other ALS data sets, as well as modification or re-calculation of future instances of Denmark’s national ALS data set. We hope that our high-resolution ecological vegetation and terrain descriptors (EcoDes-DK15) will serve as an inspiration for the publication of further such data sets covering other countries and regions and that our rasterized data set will provide a baseline of the ecosystem structure for current and future studies of biodiversity, within Denmark and beyond.


Author(s):  
E. Ahokas ◽  
J. Hyyppä ◽  
X. Yu ◽  
X. Liang ◽  
L. Matikainen ◽  
...  

This paper describes the possibilities of the Optech Titan multispectral airborne laser scanner in the fields of mapping and forestry. Investigation was targeted to six land cover classes. Multispectral laser scanner data can be used to distinguish land cover classes of the ground surface, including the roads and separate road surface classes. For forest inventory using point cloud metrics and intensity features combined, total accuracy of 93.5% was achieved for classification of three main boreal tree species (pine, spruce and birch).When using intensity features – without point height metrics - a classification accuracy of 91% was achieved for these three tree species. It was also shown that deciduous trees can be further classified into more species. We propose that intensity-related features and waveform-type features are combined with point height metrics for forest attribute derivation in area-based prediction, which is an operatively applied forest inventory process in Scandinavia. It is expected that multispectral airborne laser scanning can provide highly valuable data for city and forest mapping and is a highly relevant data asset for national and local mapping agencies in the near future.


Sign in / Sign up

Export Citation Format

Share Document