scholarly journals Absolute Vicarious Calibration of recently launched Indian Meteorological Satellite: INSAT-3D imager

Author(s):  
P. Patel ◽  
H. Bhatt ◽  
A. K. Shukla

Looking towards the advancements and popularity of remote sensing and an ever increasing need for the development of a variety of new and complex satellite sensors, it has become even more essential to continually upgrade the ability to provide absolute calibration of sensors. This article describes a simple procedure to implement post-launch calibration for VIS and SWIR channels of INSAT-3D imager over land site (Little Rann of Kutch (ROK), Gujarat) on three different days to account for characterization errors or undetermined post-launch changes in spectral response of the sensor. The measurements of field reflectance of study site (of extent ~6 km x 6 km) in the wavelength range 325–2500 nm, along with atmospheric parameters (Aerosol Optical Depth, Total Columnar Ozone, Water Vapor) and sensor spectral response functions, were input to the 6S radiative transfer model to simulate radiance at top of the atmosphere (TOA) for VIS and SWIR bands. The uncertainty in vicarious calibration coefficients due to measured spatial variability of field reflectance along with due to aerosol types were also computed for the INSAT-3D imager. The effect of surface anisotropy on TOA radiance was studied using a MODIS Bidirectional Reflectance Distribution Function (BRDF) product covering the experimental site. The results show that there is no indication of change in calibration coefficients in INSAT- 3D imager, for VIS and SWIR band over Little ROK. Comparison made between the INSAT-3D imager measured radiance and 6S simulated radiance. Analysis shows that for clear sky days, the INSAT-3D imager overestimates TOA radiance in the VIS band by 5.1 % and in the SWIR band by 11.7 % with respect to 6S simulated radiance. For these bands, in the inverse mode, the 6S corrected surface reflectance was closer to field surface reflectance. It was found that site spatial variability was a critical factor in estimating change in sensor calibration coefficients and influencing uncertainty in TOA radiance for Little ROK.

2021 ◽  
Author(s):  
Marta Luffarelli ◽  
Yves Govaerts

<p>The CISAR (Combined Inversion of Surface and AeRosols) algorithm is exploited in the framework of the ESA Aerosol Climate Change Initiatiave (CCI) project, aiming at providing a set of atmospheric (cloud and aerosol) and surface reflectance products derived from S3A/SLSTR observations using the same radiative transfer physics and assumptions. CISAR is an advance algorithm developed by Rayference originally designed for the retrieval of aerosol single scattering properties and surface reflectance from both geostationary and polar orbiting satellite observations.  It is based on the inversion of a fast radiative transfer model (FASTRE). The retrieval mechanism allows a continuous variation of the aerosol and cloud single scattering properties in the solution space.</p><p> </p><p>Traditionally, different approaches are exploited to retrieve the different Earth system components, which could lead to inconsistent data sets. The simultaneous retrieval of different atmospheric and surface variables over any type of surface (including bright surfaces and water bodies) with the same forward model and inversion scheme ensures the consistency among the retrieved Earth system components. Additionally, pixels located in the transition zone between pure clouds and pure aerosols are often discarded from both cloud and aerosol algorithms. This “twilight zone” can cover up to 30% of the globe. A consistent retrieval of both cloud and aerosol single scattering properties with the same algorithm could help filling this gap.</p><p> </p><p>The CISAR algorithm aims at overcoming the need of an external cloud mask, discriminating internally between aerosol and cloud properties. This approach helps reducing the overestimation of aerosol optical thickness in cloud contaminated pixels. The surface reflectance product is delivered both for cloud-free and cloudy observations.  </p><p> </p><p>Global maps obtained from the processing of S3A/SLSTR observations will be shown. The SLSTR/CISAR products over events such as, for instance, the Australian fire in the last months of 2019, will be discussed in terms of aerosol optical thickness, aerosol-cloud discrimination and fine/coarse mode fraction.</p>


2018 ◽  
Author(s):  
Alba Lorente ◽  
K. Folkert Boersma ◽  
Piet Stammes ◽  
L. Gijsbert Tilstra ◽  
Andreas Richter ◽  
...  

Abstract. The angular distribution of the light reflected by the Earth's surface influences top-of-atmosphere (TOA) reflectance values. This surface reflectance anisotropy has implications for UV/Vis satellite retrievals of albedo, clouds, and trace gases such as nitrogen dioxide (NO2). These retrievals routinely assume the surface to reflect light isotropically. Here we show that cloud fractions retrieved from GOME-2A and OMI with the FRESCO and OMCLDO2 algorithms have an East-West bias of 10 % to 50 % over rugged terrain, and that this bias originates from the assumption of isotropic surface reflection. To interpret the across-track bias with the DAK radiative transfer model, we implement the Bidirectional Reflectance Distribution Function (BRDF) from the Ross-Li semi-empirical model. Testing our implementation against state-of-art RTMs LIDORT and SCIATRAN, we find that simulated TOA reflectance generally agrees to within 1 %. By replacing the assumption of isotropic surface reflection in the cloud retrievals over vegetated scenes with scattering kernels and corresponding BRDF parameters from a daily, high-resolution database derived from 16 years' worth of MODIS measurements, the East-West bias in the retrieved cloud fractions largely vanishes. We conclude that across-track biases in cloud fractions can be explained by cloud algorithms not adequately accounting for the effects of surface reflectance anisotropy. The implications for NO2 air mass factor (AMF) calculations are substantial. Under moderately polluted NO2 and backscatter conditions, clear-sky AMFs are up to 20 % higher and cloud radiance fractions up to 40 % lower if surface anisotropic reflection is accounted for. The combined effect of these changes is that NO2 total AMFs increase by up to 30 % for backscatter geometries (and decrease by up to 35 % for forward scattering geometries), stronger than the effect of either contribution alone. In an unpolluted troposphere, surface BRDF effects on cloud fraction counteract (and largely cancel) the effect on the clear-sky AMF. Our results emphasize that surface reflectance anisotropy needs to be taken into account in a coherent manner for more realistic and accurate retrievals of clouds and NO2 from UV/Vis satellite sensors. These improvements will be beneficial for current sensors, in particular for the recently launched TROPOMI instrument with a high spatial resolution.


2014 ◽  
Vol 18 (2) ◽  
pp. 5-9 ◽  
Author(s):  
Anna M. Jarocińska

Abstract Natural vegetation is complex and its reflectance is not easy to model. The aim of this study was to adjust the Radiative Transfer Model parameters for modelling the reflectance of heterogeneous meadows and evaluate its accuracy dependent on the vegetation characteristics. PROSAIL input parameters and reference spectra were collected during field measurements. Two different datasets were created: in the first, the input parameters were modelled using only field measurements; in the second, three input parameters were adjusted to minimize the differences between modelled and measured spectra. Reflectance was modelled using two datasets and then verified based on field reflectance using the RMSE. The average RMSE for the first dataset was equal to 0.1058, the second was 0.0362. The accuracy of the simulated spectra was analysed dependent on the value of the biophysical parameters. Better results were obtained for meadows with higher biomass value, greater LAI and lower water content.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Mauro Masili ◽  
Liliane Ventura

Incident solar radiation on photovoltaic (PV) solar panels is not constant throughout the year. Besides dependence on the season, solar radiation is reliant on the location and weather conditions. For a given location on Earth, the best-fixed orientation of a PV panel can be determined by achieving the maximum incident solar irradiance throughout the year or for a predetermined period. In this paper, we use a sophisticated atmospheric radiative transfer model to calculate the direct and diffuse solar irradiation (radiant exposure) for the solar spectrum incident on PV solar panels to determine the best tilt angle of the panel in order to maximize absorption of solar radiation for selected periods. We used the Regula-Falsi numerical method to obtain the tilt angle at which the derivative of solar irradiation (concerning the tilt angle) approaches zero. Moreover, the spectral response of typical silicon cells is taken into account. These calculations were carried out in São Carlos (SP), a town in the southeast of Brazil. The best tilt angle was obtained for three selected periods. Additionally, we provide results for Southern latitudes ranging from 0° to −55° in steps of −5° for the meteorological seasons. We have shown that for each period, there is an increase in solar radiation absorption compared to the traditional installation angle based exclusively on the local latitude. These calculations can be extended to any location.


2005 ◽  
Vol 62 (4) ◽  
pp. 1032-1052 ◽  
Author(s):  
Ralph Kahn ◽  
Wen-Hao Li ◽  
John V. Martonchik ◽  
Carol J. Bruegge ◽  
David J. Diner ◽  
...  

Abstract Studying aerosols over ocean is one goal of the Multiangle Imaging Spectroradiometer (MISR) and other spaceborne imaging systems. But top-of-atmosphere equivalent reflectance typically falls in the range of 0.03 to 0.12 at midvisible wavelengths and can be below 0.01 in the near-infrared, when an optically thin aerosol layer is viewed over a dark ocean surface. Special attention must be given to radiometric calibration if aerosol optical thickness, and any information about particle microphysical properties, are to be reliably retrieved from such observations. MISR low-light-level vicarious calibration is performed in the vicinity of remote islands hosting Aerosol Robotic Network (AERONET) sun- and sky-scanning radiometers, under low aerosol loading, low wind speed, relatively cloud free conditions. MISR equivalent reflectance is compared with values calculated from a radiative transfer model constrained by coincident, AERONET-retrieved aerosol spectral optical thickness, size distribution, and single scattering albedo, along with in situ wind measurements. Where the nadir view is not in sun glint, MISR equivalent reflectance is also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance. The authors push the limits of the vicarious calibration method’s accuracy, aiming to assess absolute, camera-to-camera, and band-to-band radiometry. Patterns repeated over many well-constrained cases lend confidence to the results, at a few percent accuracy, as do additional vicarious calibration tests performed with multiplatform observations taken during the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) campaign. Conclusions are strongest in the red and green bands, but are too uncertain to accept for the near-infrared. MISR nadir-view and MODIS low-light-level absolute reflectances differ by about 4% in the blue and green bands, with MISR reporting higher values. In the red, MISR agrees with MODIS band 14 to better than 2%, whereas MODIS band 1 is significantly lower. Compared to the AERONET-constrained model, the MISR aft-viewing cameras report reflectances too high by several percent in the blue, green, and possibly the red. Better agreement is found in the nadir- and the forward-viewing cameras, especially in the blue and green. When implemented on a trial basis, calibration adjustments indicated by this work remove 40% of a 0.05 bias in retrieved midvisible aerosol optical depth over dark water scenes, produced by the early postlaunch MISR algorithm. A band-to-band correction has already been made to the MISR products, and the remaining calibration adjustments, totaling no more than a few percent, are planned.


2013 ◽  
Vol 52 (3) ◽  
pp. 710-726 ◽  
Author(s):  
Chenxi Wang ◽  
Ping Yang ◽  
Steven Platnick ◽  
Andrew K. Heidinger ◽  
Bryan A. Baum ◽  
...  

AbstractA computationally efficient high-spectral-resolution cloudy-sky radiative transfer model (HRTM) in the thermal infrared region (700–1300 cm−1, 0.1 cm−1 spectral resolution) is advanced for simulating the upwelling radiance at the top of atmosphere and for retrieving cloud properties. A precomputed transmittance database is generated for simulating the absorption contributed by up to seven major atmospheric absorptive gases (H2O, CO2, O3, O2, CH4, CO, and N2O) by using a rigorous line-by-line radiative transfer model (LBLRTM). Both the line absorption of individual gases and continuum absorption are included in the database. A high-spectral-resolution ice particle bulk scattering properties database is employed to simulate the radiation transfer within a vertically nonisothermal ice cloud layer. Inherent to HRTM are sensor spectral response functions that couple with high-spectral-resolution measurements in the thermal infrared regions from instruments such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer. When compared with the LBLRTM and the discrete ordinates radiative transfer model (DISORT), the root-mean-square error of HRTM-simulated single-layer cloud brightness temperatures in the thermal infrared window region is generally smaller than 0.2 K. An ice cloud optical property retrieval scheme is developed using collocated AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) data. A retrieval method is proposed to take advantage of the high-spectral-resolution instrument. On the basis of the forward model and retrieval method, a case study is presented for the simultaneous retrieval of ice cloud optical thickness τ and effective particle size Deff that includes a cloud-top-altitude self-adjustment approach to improve consistency with simulations.


2021 ◽  
Author(s):  
Manajit Sengupta ◽  
Aron Habte

<p>Understanding long-term solar resource variability is essential for planning and deployment of solar energy systems. These variabilities occur due to deterministic effects such as sun cycle and nondeterministic such as complex weather patterns. The NREL’s National Solar Radiation Database (NSRDB) provides long term solar resource data covering 1998- 2019 containing more than 2 million pixels over the Americas and gets updated on an annual basis. This dataset is satellite-based and uses a two-step physical model for it’s development. In the first step we retrieve cloud properties such as cloud mask, cloud type, cloud optical depth and effective radius. The second step uses a fast radiative transfer model to compute solar radiation.  This dataset is ideal for studying solar resource variability. For this study, NSRDB version 3 which contains data from 1998-2017 on a half hourly and 4x4 km temporal and spatial resolution was used. The study analyzed the spatial and temporal trend of solar resource of global horizontal irradiance (GHI) and direct normal irradiance (DNI) using long-term 20-years NSRDB data. The coefficient of variation (COV) was used to analyze the spatio-temporal interannual and seasonal variabilities. The spatial variability was analyzed by comparing the center pixel to neighboring pixels. The spatial variability result showed higher COV as the number of neighboring pixels increased. Similarly, the temporal variability for the NSRDB domain ranges on average from ±10% for GHI and ±20% for DNI. Furthermore, the long-term variabilities were also analyzed using the Köppen-Geiger climate classification. This assisted in the interpretation of the result by reducing the originally large number of pixels into a smaller number of groups. This presentation will provided a unique look at long-term spatial and temporal variability of solar radiation using high-resolution satellite-based datasets.</p>


2010 ◽  
Vol 3 (5) ◽  
pp. 1185-1203 ◽  
Author(s):  
Y. Zhou ◽  
D. Brunner ◽  
R. J. D. Spurr ◽  
K. F. Boersma ◽  
M. Sneep ◽  
...  

Abstract. Surface reflectance is a key parameter in satellite trace gas retrievals in the UV/visible range and in particular for the retrieval of nitrogen dioxide (NO2) vertical tropospheric columns (VTCs). Current operational retrievals rely on coarse-resolution reflectance data and do not account for the generally anisotropic properties of surface reflectance. Here we present a NO2 VTC retrieval that uses MODIS bi-directional reflectance distribution function (BRDF) data at high temporal (8 days) and spatial (1 km × 1 km) resolution in combination with the LIDORT radiative transfer model to account for the dependence of surface reflectance on viewing and illumination geometry. The method was applied to two years of NO2 observations from the Ozone Monitoring Instrument (OMI) over Europe. Due to its wide swath, OMI is particularly sensitive to BRDF effects. Using representative BRDF parameters for various land surfaces, we found that in July (low solar zenith angles) and November (high solar zenith angles) and for typical viewing geometries of OMI, differences between MODIS black-sky albedos and surface bi-directional reflectances are of the order of 0–10% and 0–40%, respectively, depending on the position of the OMI pixel within the swath. In the retrieval, black-sky albedo was treated as a Lambertian (isotropic) reflectance, while for BRDF effects we used the kernel-based approach in the MODIS BRDF product. Air Mass Factors were computed using the LIDORT radiative transfer model based on these surface reflectance conditions. Differences in NO2 VTCs based on the Lambertian and BRDF approaches were found to be of the order of 0–3% in July and 0–20% in November with the extreme values found at large viewing angles. The much larger differences in November are mainly due to stronger BRDF effects at higher solar zenith angles. To a smaller extent, they are also caused by the typically more pronounced maximum of the NO2 a priori profiles in the boundary layer during the cold season, which make the retrieval more sensitive to radiation changes near the surface. However, BRDF impacts vary considerably across Europe due to differences in land surface type and increasing solar zenith angles at higher latitude. Finally, we compare BRDF-based NO2 VTCs with those retrieved using the GOME/TOMS Lambertian equivalent reflectance (LER) data set. The relative differences are mostly below 15% in July but in November the NO2 VTCs from TOMS/GOME are lower by 20–60%. Our results indicate that the specific choice of albedo data set is even more important than accounting for surface BRDF effects, and this again demonstrates the strong requirement for more accurate surface reflectance data sets.


2020 ◽  
Author(s):  
Xu Liu ◽  
Wan Wu ◽  
Qiguang Yang ◽  
Yolanda Shea ◽  
Costy Lukashin ◽  
...  

<p>NASA is planning to launch a highly accurate hyperspectral sensor to measure Earth-reflected solar radiances from the International Space Station in 2023.  The Climate Absolute Radiance and Refractivity Observatory (CLARREO) Pathfinder (CPF) instrument will have an absolute calibration accuracy of 0.3% (1-sigma), which is about a factor of 5 to 10 more accurate than current satellite reflected solar instruments.  We will describe the CPF approach developed to inter-calibrate the Clouds and Earth’s Radiant Energy System (CERES) and Visible Infrared Imaging Radiometer Suite (VIIRS) instruments.  A Principal Component-based Radiative Transfer Model (PCRTM) is used to perform high fidelity CPF radiance spectra simulation and to extend the spectral range of the CPF to match that of the shortwave CERES reflected solar radiation.  The PCRTM model can also be used to correct small errors due to imperfect angular matching between the CPF/CERES and CPF/VIIRS observation angles.  Examples of inter-calibration uncertainty that is anticipated will be demonstrated using simulated CPF data.</p>


2011 ◽  
Vol 28 (6) ◽  
pp. 767-778 ◽  
Author(s):  
Yong Chen ◽  
Yong Han ◽  
Quanhua Liu ◽  
Paul Van Delst ◽  
Fuzhong Weng

Abstract To better use the Stratospheric Sounding Unit (SSU) data for reanalysis and climate studies, issues associated with the fast radiative transfer (RT) model for SSU have recently been revisited and the results have been implemented into the Community Radiative Transfer Model version 2. This study revealed that the spectral resolution for the sensor’s spectral response functions (SRFs) calculations is very important, especially for channel 3. A low spectral resolution SRF results, on average, in 0.6-K brightness temperature (BT) errors for that channel. The variations of the SRFs due to the CO2 cell pressure variations have been taken into account. The atmospheric transmittance coefficients of the fast RT model for the Television and Infrared Observation Satellite (TIROS)-N, NOAA-6, NOAA-7, NOAA-8, NOAA-9, NOAA-11, and NOAA-14 have been generated with CO2 and O3 as variable gases. It is shown that the BT difference between the fast RT model and line-by-line model is less than 0.1 K, but the fast RT model is at least two orders of magnitude faster. The SSU measurements agree well with the simulations that are based on the atmospheric profiles from the Earth Observing System Aura Microwave Limb Sounding product and the Sounding of the Atmosphere using Broadband Emission Radiometry on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. The impact of the CO2 cell pressures shift for SSU has been evaluated by using the Committee on Space Research (COSPAR) International Reference Atmosphere (CIRA) model profiles. It is shown that the impacts can be on an order of 1 K, especially for SSU NOAA-7 channel 2. There are large brightness temperature gaps between observation and model simulation using the available cell pressures for NOAA-7 channel 2 after June 1983. Linear fittings of this channel’s cell pressures based on previous cell leaking behaviors have been studied, and results show that the new cell pressures are reasonable. The improved SSU fast model can be applied for reanalysis of the observations. It can also be used to address two important corrections in deriving trends from SSU measurements: CO2 cell leaking correction and atmospheric CO2 concentration correction.


Sign in / Sign up

Export Citation Format

Share Document