scholarly journals The importance of surface reflectance anisotropy for cloud and NO<sub>2</sub> retrievals from GOME-2 and OMI

Author(s):  
Alba Lorente ◽  
K. Folkert Boersma ◽  
Piet Stammes ◽  
L. Gijsbert Tilstra ◽  
Andreas Richter ◽  
...  

Abstract. The angular distribution of the light reflected by the Earth's surface influences top-of-atmosphere (TOA) reflectance values. This surface reflectance anisotropy has implications for UV/Vis satellite retrievals of albedo, clouds, and trace gases such as nitrogen dioxide (NO2). These retrievals routinely assume the surface to reflect light isotropically. Here we show that cloud fractions retrieved from GOME-2A and OMI with the FRESCO and OMCLDO2 algorithms have an East-West bias of 10 % to 50 % over rugged terrain, and that this bias originates from the assumption of isotropic surface reflection. To interpret the across-track bias with the DAK radiative transfer model, we implement the Bidirectional Reflectance Distribution Function (BRDF) from the Ross-Li semi-empirical model. Testing our implementation against state-of-art RTMs LIDORT and SCIATRAN, we find that simulated TOA reflectance generally agrees to within 1 %. By replacing the assumption of isotropic surface reflection in the cloud retrievals over vegetated scenes with scattering kernels and corresponding BRDF parameters from a daily, high-resolution database derived from 16 years' worth of MODIS measurements, the East-West bias in the retrieved cloud fractions largely vanishes. We conclude that across-track biases in cloud fractions can be explained by cloud algorithms not adequately accounting for the effects of surface reflectance anisotropy. The implications for NO2 air mass factor (AMF) calculations are substantial. Under moderately polluted NO2 and backscatter conditions, clear-sky AMFs are up to 20 % higher and cloud radiance fractions up to 40 % lower if surface anisotropic reflection is accounted for. The combined effect of these changes is that NO2 total AMFs increase by up to 30 % for backscatter geometries (and decrease by up to 35 % for forward scattering geometries), stronger than the effect of either contribution alone. In an unpolluted troposphere, surface BRDF effects on cloud fraction counteract (and largely cancel) the effect on the clear-sky AMF. Our results emphasize that surface reflectance anisotropy needs to be taken into account in a coherent manner for more realistic and accurate retrievals of clouds and NO2 from UV/Vis satellite sensors. These improvements will be beneficial for current sensors, in particular for the recently launched TROPOMI instrument with a high spatial resolution.

2018 ◽  
Vol 11 (7) ◽  
pp. 4509-4529 ◽  
Author(s):  
Alba Lorente ◽  
K. Folkert Boersma ◽  
Piet Stammes ◽  
L. Gijsbert Tilstra ◽  
Andreas Richter ◽  
...  

Abstract. The angular distribution of the light reflected by the Earth's surface influences top-of-atmosphere (TOA) reflectance values. This surface reflectance anisotropy has implications for UV/Vis satellite retrievals of albedo, clouds, and trace gases such as nitrogen dioxide (NO2). These retrievals routinely assume the surface to reflect light isotropically. Here we show that cloud fractions retrieved from GOME-2A and OMI with the FRESCO and OMCLDO2 algorithms have an east–west bias of 10 % to 50 %, which are highest over vegetation and forested areas, and that this bias originates from the assumption of isotropic surface reflection. To interpret the across-track bias with the DAK radiative transfer model, we implement the bidirectional reflectance distribution function (BRDF) from the Ross–Li semi-empirical model. Testing our implementation against state-of-the-art RTMs LIDORT and SCIATRAN, we find that simulated TOA reflectance generally agrees to within 1 %. We replace the assumption of isotropic surface reflection in the equations used to retrieve cloud fractions over forested scenes with scattering kernels and corresponding BRDF parameters from a daily high-resolution database derived from 16 years' worth of MODIS measurements. By doing this, the east–west bias in the simulated cloud fractions largely vanishes. We conclude that across-track biases in cloud fractions can be explained by cloud algorithms that do not adequately account for the effects of surface reflectance anisotropy. The implications for NO2 air mass factor (AMF) calculations are substantial. Under moderately polluted NO2 and backward-scattering conditions, clear-sky AMFs are up to 20 % higher and cloud radiance fractions up to 40 % lower if surface anisotropic reflection is accounted for. The combined effect of these changes is that NO2 total AMFs increase by up to 30 % for backward-scattering geometries (and decrease by up to 35 % for forward-scattering geometries), which is stronger than the effect of either contribution alone. In an unpolluted troposphere, surface BRDF effects on cloud fraction counteract (and largely cancel) the effect on the clear-sky AMF. Our results emphasise that surface reflectance anisotropy needs to be taken into account in a coherent manner for more realistic and accurate retrievals of clouds and NO2 from UV/Vis satellite sensors. These improvements will be beneficial for current sensors, in particular for the recently launched TROPOMI instrument with a high spatial resolution.


2013 ◽  
Vol 30 (10) ◽  
pp. 2478-2487 ◽  
Author(s):  
Quanhua Liu ◽  
Changyong Cao ◽  
Fuzhong Weng

Abstract The Visible Infrared Imaging Radiometer Suite (VIIRS) thermal emissive band (TEB) M12 images centered at 3.7 μm were analyzed and unexpected striping was found. The striping was seen from ascending orbit (daytime) over uniform oceans and has a magnitude of ±0.5 K aligned with the VIIRS 16 detectors in a track direction of 12 km. From the ocean surface, reflected solar radiation can significantly increase the M12 radiance under certain geometric conditions in which bidirectional reflectance distribution function (BRDF) becomes important. Using the Community Radiative Transfer Model (CRTM), developed at the U.S. Joint Center for Satellite Data Assimilation (JCSDA), M12 band image striping over a uniform ocean was found that was caused by the difference of sensor azimuthal angles among detectors and the contamination of solar radiation. By analyzing the VIIRS M10 and M11 bands, which are two reflective bands, similar striping images over the uniform oceans were found. The M10 and M11 radiance/reflectance can be used to determine the BRDF effect on the thermal emissive band M12, and eventually be used to remove the solar radiation contamination from the M12 band. This study demonstrated that the M12 image striping is a real instrument artifact. Whether to remove the striping or to utilize the striping information fully depends on the application.


2021 ◽  
Author(s):  
Benoît Tournadre ◽  
Benoît Gschwind ◽  
Yves-Marie Saint-Drenan ◽  
Philippe Blanc

Abstract. We develop a new way to retrieve the cloud index from a large variety of satellite instruments sensitive to reflected solar radiation, embedded on geostationary as non geostationary platforms. The cloud index is a widely used proxy for the effective cloud transmissivity, also called clear-sky index. This study is in the framework of the development of the Heliosat-V method for estimating downwelling solar irradiance at the surface of the Earth (DSSI) from satellite imagery. To reach its versatility, the method uses simulations from a fast radiative transfer model to estimate overcast (cloudy) and clear-sky (cloud-free) satellite scenes of the Earth’s reflectances. Simulations consider the anisotropy of the reflectances caused by both surface and atmosphere, and are adapted to the spectral sensitivity of the sensor. The anisotropy of ground reflectances is described by a bidirectional reflectance distribution function model and external satellite-derived data. An implementation of the method is applied to the visible imagery from a Meteosat Second Generation satellite, for 11 locations where high quality in situ measurements of DSSI are available from the Baseline Surface Radiation Network. Results from our preliminary implementation of Heliosat-V and ground-based measurements show a correlation coefficient reaching 0.948, for 15-minute means of DSSI, similar to operational and corrected satellite-based data products (0.950 for HelioClim3 version 5 and 0.937 for CAMS Radiation Service).


Author(s):  
Sa Xiao ◽  
Xinpeng Tian ◽  
Qiang Liu ◽  
Jianguang Wen ◽  
Yushuang Ma ◽  
...  

Topographic correction of surface reflectance in rugged terrain areas is the prerequisite for the quantitative application of remote sensing in mountainous areas. Physics-based radiative transfer model can be applied to correct the topographic effect and accurately retrieve the reflectance of the slope surface from high quality satellite image such as Landsat8 OLI. However, as more and more images data available from various of sensors, some times we can not get the accurate sensor calibration parameters and atmosphere conditions which are needed in the physics-based topographic correction model. This paper proposed a semi-empirical atmosphere and topographic corrction model for muti-source satellite images without accurate calibration parameters.Based on this model we can get the topographic corrected surface reflectance from DN data, and we tested and verified this model with image data from Chinese satellite HJ and GF. The result shows that the correlation factor was reduced almost 85&amp;thinsp;% for near infrared bands and the classification overall accuracy of classification increased 14&amp;thinsp;% after correction for HJ. The reflectance difference of slope face the sun and face away the sun have reduced after correction.


2015 ◽  
Vol 15 (8) ◽  
pp. 4131-4144 ◽  
Author(s):  
P. Wang ◽  
M. Allaart ◽  
W. H. Knap ◽  
P. Stammes

Abstract. A green light sensor has been developed at KNMI to measure actinic flux profiles using an ozonesonde balloon. In total, 63 launches with ascending and descending profiles were performed between 2006 and 2010. The measured uncalibrated actinic flux profiles are analysed using the Doubling–Adding KNMI (DAK) radiative transfer model. Values of the cloud optical thickness (COT) along the flight track were taken from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Cloud Physical Properties (CPP) product. The impact of clouds on the actinic flux profile is evaluated on the basis of the cloud modification factor (CMF) at the cloud top and cloud base, which is the ratio between the actinic fluxes for cloudy and clear-sky scenes. The impact of clouds on the actinic flux is clearly detected: the largest enhancement occurs at the cloud top due to multiple scattering. The actinic flux decreases almost linearly from cloud top to cloud base. Above the cloud top the actinic flux also increases compared to clear-sky scenes. We find that clouds can increase the actinic flux to 2.3 times the clear-sky value at cloud top and decrease it to about 0.05 at cloud base. The relationship between CMF and COT agrees well with DAK simulations, except for a few outliers. Good agreement is found between the DAK-simulated actinic flux profiles and the observations for single-layer clouds in fully overcast scenes. The instrument is suitable for operational balloon measurements because of its simplicity and low cost. It is worth further developing the instrument and launching it together with atmospheric chemistry composition sensors.


2021 ◽  
Author(s):  
Marta Luffarelli ◽  
Yves Govaerts

&lt;p&gt;The CISAR (Combined Inversion of Surface and AeRosols) algorithm is exploited in the framework of the ESA Aerosol Climate Change Initiatiave (CCI) project, aiming at providing a set of atmospheric (cloud and aerosol) and surface reflectance products derived from S3A/SLSTR observations using the same radiative transfer physics and assumptions. CISAR is an advance algorithm developed by Rayference originally designed for the retrieval of aerosol single scattering properties and surface reflectance from both geostationary and polar orbiting satellite observations. &amp;#160;It is based on the inversion of a fast radiative transfer model (FASTRE). The retrieval mechanism allows a continuous variation of the aerosol and cloud single scattering properties in the solution space.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Traditionally, different approaches are exploited to retrieve the different Earth system components, which could lead to inconsistent data sets. The simultaneous retrieval of different atmospheric and surface variables over any type of surface (including bright surfaces and water bodies) with the same forward model and inversion scheme ensures the consistency among the retrieved Earth system components. Additionally, pixels located in the transition zone between pure clouds and pure aerosols are often discarded from both cloud and aerosol algorithms. This &amp;#8220;twilight zone&amp;#8221; can cover up to 30% of the globe. A consistent retrieval of both cloud and aerosol single scattering properties with the same algorithm could help filling this gap.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;The CISAR algorithm aims at overcoming the need of an external cloud mask, discriminating internally between aerosol and cloud properties. This approach helps reducing the overestimation of aerosol optical thickness in cloud contaminated pixels. The surface reflectance product is delivered both for cloud-free and cloudy observations. &amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Global maps obtained from the processing of S3A/SLSTR observations will be shown. The SLSTR/CISAR products over events such as, for instance, the Australian fire in the last months of 2019, will be discussed in terms of aerosol optical thickness, aerosol-cloud discrimination and fine/coarse mode fraction.&lt;/p&gt;


2018 ◽  
Vol 147 (1) ◽  
pp. 85-106 ◽  
Author(s):  
Ting-Chi Wu ◽  
Milija Zupanski ◽  
Lewis D. Grasso ◽  
Christian D. Kummerow ◽  
Sid-Ahmed Boukabara

Abstract Satellite all-sky radiances from the Advanced Technology Microwave Sounder (ATMS) are assimilated into the Hurricane Weather Research and Forecasting (HWRF) Model using the hybrid Gridpoint Statistical Interpolation analysis system (GSI). To extend the all-sky capability recently developed for global applications to HWRF, some modifications in HWRF and GSI are facilitated. In particular, total condensate is added as a control variable, and six distinct hydrometeor habits are added as state variables in hybrid GSI within HWRF. That is, clear-sky together with cloudy and precipitation-affected satellite pixels are assimilated using the Community Radiative Transfer Model (CRTM) as a forward operator that includes hydrometeor information and Jacobians with respect to hydrometeor variables. A single case study with the 2014 Atlantic storm Hurricane Cristobal is used to demonstrate the methodology of extending the global all-sky capability to HWRF due to ATMS data availability. Two data assimilation experiments are carried out. One experiment uses the operational configuration and assimilates ATMS radiances under the clear-sky condition, and the other experiment uses the modified HWRF system and assimilates ATMS radiances under the all-sky condition with the inclusion of total condensate update and cycling. Observed and synthetic Geostationary Operational Environmental Satellite (GOES)-13 data along with Global Precipitation Measurement Mission (GPM) Microwave Imager (GMI) data from the two experiments are used to show that the experiment with all-sky ATMS radiances assimilation has cloud signatures that are supported by observations. In contrast, there is lack of clouds in the initial state that led to a noticeable lag of cloud development in the experiment that assimilates clear-sky radiances.


2016 ◽  
Vol 9 (10) ◽  
pp. 4955-4975 ◽  
Author(s):  
Jochen Landgraf ◽  
Joost aan de Brugh ◽  
Remco Scheepmaker ◽  
Tobias Borsdorff ◽  
Haili Hu ◽  
...  

Abstract. The Tropospheric Monitoring Instrument (TROPOMI) spectrometer is the single payload of the Copernicus Sentinel 5 Precursor (S5P) mission. It measures Earth radiance spectra in the shortwave infrared spectral range around 2.3 µm with a dedicated instrument module. These measurements provide carbon monoxide (CO) total column densities over land, which for clear sky conditions are highly sensitive to the tropospheric boundary layer. For cloudy atmospheres over land and ocean, the column sensitivity changes according to the light path through the atmosphere. In this study, we present the physics-based operational S5P algorithm to infer atmospheric CO columns satisfying the envisaged accuracy ( <  15 %) and precision ( <  10 %) both for clear sky and cloudy observations with low cloud height. Here, methane absorption in the 2.3 µm range is combined with methane abundances from a global chemical transport model to infer information on atmospheric scattering. For efficient processing, we deploy a linearized two-stream radiative transfer model as forward model and a profile scaling approach to adjust the CO abundance in the inversion. Based on generic measurement ensembles, including clear sky and cloudy observations, we estimated the CO retrieval precision to be  ≤  11 % for surface albedo  ≥  0.03 and solar zenith angle  ≤  70°. CO biases of  ≤  3 % are introduced by inaccuracies in the methane a priori knowledge. For strongly enhanced CO concentrations in the tropospheric boundary layer and for cloudy conditions, CO errors in the order of 8 % can be introduced by the retrieval of cloud parameters of our algorithm. Moreover, we estimated the effect of a distorted spectral instrument response due to the inhomogeneous illumination of the instrument entrance slit in the flight direction to be  <  2 % with pseudo-random characteristics when averaging over space and time. Finally, the CO data exploitation is demonstrated for a TROPOMI orbit of simulated shortwave infrared measurements. Overall, the study demonstrates that for an instrument that performs in compliance with the pre-flight specifications, the CO product will meet the required product performance well.


2010 ◽  
Vol 27 (10) ◽  
pp. 1609-1623 ◽  
Author(s):  
B. Petrenko ◽  
A. Ignatov ◽  
Y. Kihai ◽  
A. Heidinger

Abstract The Advanced Clear Sky Processor for Oceans (ACSPO) generates clear-sky products, such as SST, clear-sky radiances, and aerosol, from Advanced Very High Resolution Radiometer (AVHRR)-like measurements. The ACSPO clear-sky mask (ACSM) identifies clear-sky pixels within the ACSPO products. This paper describes the ACSM structure and compares the performances of ACSM and its predecessor, Clouds from AVHRR Extended Algorithm (CLAVRx). ACSM essentially employs online clear-sky radiative transfer simulations enabled within ACSPO with the Community Radiative Transfer Model (CRTM) in conjunction with numerical weather prediction atmospheric [Global Forecast System (GFS)] and SST [Reynolds daily high-resolution blended SST (DSST)] fields. The baseline ACSM tests verify the accuracy of fitting observed brightness temperatures with CRTM, check retrieved SST for consistency with Reynolds SST, and identify ambient cloudiness at the boundaries of cloudy systems. Residual cloud effects are screened out with several tests, adopted from CLAVRx, and with the SST spatial uniformity test designed to minimize misclassification of sharp SST gradients as clouds. Cross-platform and temporal consistencies of retrieved SSTs are maintained by accounting for SST and brightness temperature biases, estimated within ACSPO online and independently from ACSM. The performance of ACSM is characterized in terms of statistics of deviations of retrieved SST from the DSST. ACSM increases the amount of “clear” pixels by 30% to 40% and improves statistics of retrieved SST compared with CLAVRx. ACSM is also shown to be capable of producing satisfactory statistics of SST anomalies if the reference SST field for the exact date of observations is unavailable at the time of processing.


Sign in / Sign up

Export Citation Format

Share Document