scholarly journals Community Radiative Transfer Model for Stratospheric Sounding Unit

2011 ◽  
Vol 28 (6) ◽  
pp. 767-778 ◽  
Author(s):  
Yong Chen ◽  
Yong Han ◽  
Quanhua Liu ◽  
Paul Van Delst ◽  
Fuzhong Weng

Abstract To better use the Stratospheric Sounding Unit (SSU) data for reanalysis and climate studies, issues associated with the fast radiative transfer (RT) model for SSU have recently been revisited and the results have been implemented into the Community Radiative Transfer Model version 2. This study revealed that the spectral resolution for the sensor’s spectral response functions (SRFs) calculations is very important, especially for channel 3. A low spectral resolution SRF results, on average, in 0.6-K brightness temperature (BT) errors for that channel. The variations of the SRFs due to the CO2 cell pressure variations have been taken into account. The atmospheric transmittance coefficients of the fast RT model for the Television and Infrared Observation Satellite (TIROS)-N, NOAA-6, NOAA-7, NOAA-8, NOAA-9, NOAA-11, and NOAA-14 have been generated with CO2 and O3 as variable gases. It is shown that the BT difference between the fast RT model and line-by-line model is less than 0.1 K, but the fast RT model is at least two orders of magnitude faster. The SSU measurements agree well with the simulations that are based on the atmospheric profiles from the Earth Observing System Aura Microwave Limb Sounding product and the Sounding of the Atmosphere using Broadband Emission Radiometry on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. The impact of the CO2 cell pressures shift for SSU has been evaluated by using the Committee on Space Research (COSPAR) International Reference Atmosphere (CIRA) model profiles. It is shown that the impacts can be on an order of 1 K, especially for SSU NOAA-7 channel 2. There are large brightness temperature gaps between observation and model simulation using the available cell pressures for NOAA-7 channel 2 after June 1983. Linear fittings of this channel’s cell pressures based on previous cell leaking behaviors have been studied, and results show that the new cell pressures are reasonable. The improved SSU fast model can be applied for reanalysis of the observations. It can also be used to address two important corrections in deriving trends from SSU measurements: CO2 cell leaking correction and atmospheric CO2 concentration correction.

2013 ◽  
Vol 52 (3) ◽  
pp. 710-726 ◽  
Author(s):  
Chenxi Wang ◽  
Ping Yang ◽  
Steven Platnick ◽  
Andrew K. Heidinger ◽  
Bryan A. Baum ◽  
...  

AbstractA computationally efficient high-spectral-resolution cloudy-sky radiative transfer model (HRTM) in the thermal infrared region (700–1300 cm−1, 0.1 cm−1 spectral resolution) is advanced for simulating the upwelling radiance at the top of atmosphere and for retrieving cloud properties. A precomputed transmittance database is generated for simulating the absorption contributed by up to seven major atmospheric absorptive gases (H2O, CO2, O3, O2, CH4, CO, and N2O) by using a rigorous line-by-line radiative transfer model (LBLRTM). Both the line absorption of individual gases and continuum absorption are included in the database. A high-spectral-resolution ice particle bulk scattering properties database is employed to simulate the radiation transfer within a vertically nonisothermal ice cloud layer. Inherent to HRTM are sensor spectral response functions that couple with high-spectral-resolution measurements in the thermal infrared regions from instruments such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer. When compared with the LBLRTM and the discrete ordinates radiative transfer model (DISORT), the root-mean-square error of HRTM-simulated single-layer cloud brightness temperatures in the thermal infrared window region is generally smaller than 0.2 K. An ice cloud optical property retrieval scheme is developed using collocated AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) data. A retrieval method is proposed to take advantage of the high-spectral-resolution instrument. On the basis of the forward model and retrieval method, a case study is presented for the simultaneous retrieval of ice cloud optical thickness τ and effective particle size Deff that includes a cloud-top-altitude self-adjustment approach to improve consistency with simulations.


2018 ◽  
Vol 35 (6) ◽  
pp. 1283-1298 ◽  
Author(s):  
X. Zhuge ◽  
X. Zou ◽  
F. Weng ◽  
M. Sun

AbstractThis study compares the simulation biases of Advanced Himawari Imager (AHI) brightness temperature to observations made at night over China through the use of three land surface emissivity (LSE) datasets. The University of Wisconsin–Madison High Spectral Resolution Emissivity dataset, the Combined Advanced Spaceborne Thermal Emission and Reflection Radiometer and Moderate Resolution Imaging Spectroradiometer Emissivity database over Land High Spectral Resolution Emissivity dataset, and the International Geosphere–Biosphere Programme (IGBP) infrared LSE module, as well as land skin temperature observations from the National Basic Meteorological Observing stations in China are used as inputs to the Community Radiative Transfer Model. The results suggest that the standard deviations of AHI observations minus background simulations (OMBs) are largely consistent for the three LSE datasets. Also, negative biases of the OMBs of brightness temperature uniformly occur for each of the three datasets. There are no significant differences in OMB biases estimated with the three LSE datasets over cropland and forest surface types for all five AHI surface-sensitive channels. Over the grassland surface type, significant differences (~0.8 K) are found at the 10.4-, 11.2-, and 12.4-μm channels if using the IGBP dataset. Over nonvegetated surface types (e.g., sandy land, gobi, and bare rock), the lack of a monthly variation in IGBP LSE introduces large negative biases for the 3.9- and 8.6-μm channels, which are greater than those from the two other LSE datasets. Thus, improvements in simulating AHI infrared surface-sensitive channels can be made when using spatially and temporally varying LSE estimates.


2018 ◽  
Vol 10 (9) ◽  
pp. 1451 ◽  
Author(s):  
Alexandre Roy ◽  
Marion Leduc-Leballeur ◽  
Ghislain Picard ◽  
Alain Royer ◽  
Peter Toose ◽  
...  

Detailed angular ground-based L-band brightness temperature (TB) measurements over snow covered frozen soil in a prairie environment were used to parameterize and evaluate an electromagnetic model, the Wave Approach for LOw-frequency MIcrowave emission in Snow (WALOMIS), for seasonal snow. WALOMIS, initially developed for Antarctic applications, was extended with a soil interface model. A Gaussian noise on snow layer thickness was implemented to account for natural variability and thus improve the TB simulations compared to observations. The model performance was compared with two radiative transfer models, the Dense Media Radiative Transfer-Multi Layer incoherent model (DMRT-ML) and a version of the Microwave Emission Model for Layered Snowpacks (MEMLS) adapted specifically for use at L-band in the original one-layer configuration (LS-MEMLS-1L). Angular radiometer measurements (30°, 40°, 50°, and 60°) were acquired at six snow pits. The root-mean-square error (RMSE) between simulated and measured TB at vertical and horizontal polarizations were similar for the three models, with overall RMSE between 7.2 and 10.5 K. However, WALOMIS and DMRT-ML were able to better reproduce the observed TB at higher incidence angles (50° and 60°) and at horizontal polarization. The similar results obtained between WALOMIS and DMRT-ML suggests that the interference phenomena are weak in the case of shallow seasonal snow despite the presence of visible layers with thicknesses smaller than the wavelength, and the radiative transfer model can thus be used to compute L-band brightness temperature.


2020 ◽  
Vol 28 (18) ◽  
pp. 25730
Author(s):  
Wenwen Li ◽  
Feng Zhang ◽  
Yi-Ning Shi ◽  
Hironobu Iwabuchi ◽  
Mingwei Zhu ◽  
...  

2019 ◽  
Vol 11 (20) ◽  
pp. 2338 ◽  
Author(s):  
Liu ◽  
Chu ◽  
Yin ◽  
Liu

Accurate precipitation detection is one of the most important factors in satellite data assimilation, due to the large uncertainties associated with precipitation properties in radiative transfer models and numerical weather prediction (NWP) models. In this paper, a method to achieve remote sensing of precipitation and classify its intensity over land using a co-located ground-based radar network is described. This method is intended to characterize the O−B biases for the microwave humidity sounder -2 (MWHS-2) under four categories of precipitation: precipitation-free (0–5 dBZ), light precipitation (5–20 dBZ), moderate precipitation (20–35 dBZ), and intense precipitation (>35 dBZ). Additionally, O represents the observed brightness temperature (TB) of the satellite and B is the simulated TB from the model background field using the radiative transfer model. Thresholds for the brightness temperature differences between channels, as well as the order relation between the differences, exhibited a good estimation of precipitation. It is demonstrated that differences between observations and simulations were predominantly due to the cases in which radar reflectivity was above 15 dBZ. For most channels, the biases and standard deviations of O−B increased with precipitation intensity. Specifically, it is noted that for channel 11 (183.31 ± 1 GHz), the standard deviations of O−B under moderate and intense precipitation were even smaller than those under light precipitation and precipitation-free conditions. Likewise, abnormal results can also be seen for channel 4 (118.75 ± 0.3 GHz).


2020 ◽  
Vol 12 (18) ◽  
pp. 2939
Author(s):  
Chang-Hwan Park ◽  
Thomas Jagdhuber ◽  
Andreas Colliander ◽  
Johan Lee ◽  
Aaron Berg ◽  
...  

An accurate radiative transfer model (RTM) is essential for the retrieval of soil moisture (SM) from microwave remote sensing data, such as the passive microwave measurements from the Soil Moisture Active Passive (SMAP) mission. This mission delivers soil moisture products based upon L-band brightness temperature data, via retrieval algorithms for surface and root-zone soil moisture, the latter is retrieved using data assimilation and model support. We found that the RTM based on the tau-omega (τ-ω) model can suffer from significant errors over croplands in the simulation of brightness temperature (Tb) (in average between −9.4K and +12.0K for single channel algorithm (SCA); −8K and +9.7K for dual-channel algorithm (DCA)) if the vegetation scattering albedo (omega) is set constant and temporal variations are not considered. In order to reduce this uncertainty, we propose a time-varying parameterization of omega for the widely established zeroth order radiative transfer τ-ω model. The main assumption is that omega can be expressed by a functional relationship between vegetation optical depth (tau) and the Green Vegetation Fraction (GVF). Assuming allometry in the tau-omega relationship, a power-law function was established and it is supported by correlating measurements of tau and GVF. With this relationship, both tau and omega increase during the development of vegetation. The application of the proposed time-varying vegetation scattering albedo results in a consistent improvement for the unbiased root mean square error of 16% for SCA and 15% for DCA. The reduction for positive and negative biases was 45% and 5% for SCA and 26% and 12% for DCA, respectively. This indicates that vegetation dynamics within croplands are better represented by a time-varying single scattering albedo. Based on these results, we anticipate that the time-varying omega within the tau-omega model will help to mitigate potential estimation errors in the current SMAP soil moisture products (SCA and DCA). Furthermore, the improved tau-omega model might serve as a more accurate observation operator for SMAP data assimilation in weather and climate prediction model.


2020 ◽  
Author(s):  
Dominic Fawcett ◽  
Jonathan Bennie ◽  
Karen Anderson

<p>The light environment within vegetated landscapes is a key driver of microclimate, creating varied habitats over small spatial extents and controls the distribution of understory plant species. Modelling spatial variations of light at these scales requires finely resolved (< 1 m) information on topography and canopy properties. We demonstrate an approach to modelling spatial distributions and temporal progression of understory photosynthetically active radiation (PAR) utilising a three dimensional radiative transfer model (discrete anisotropic radiative transfer model: DART) where the scene is parameterised by drone-based data.</p><p>The study site, located in west Cornwall, UK, includes a small mixed woodland as well as isolated free-standing trees. Data were acquired from March to August 2019. Vegetation height and distribution were derived from point clouds generated from drone image data using structure-from-motion (SfM) photogrammetry. These data were supplemented by multi-temporal multispectral imagery (Parrot Sequoia camera) which were used to generate an empirical model by relating a vegetation index to plant area index derived from hemispherical photography taken over the same time period. Simulations of the 3D radiative budget were performed for the PAR wavelength interval (400 – 700 nm) using DART.</p><p>Besides maps of instantaneous above and below canopy irradiance, we provide models of daily light integrals (DLI) which are assessed against field validation measurements with PAR quantum sensors. We find relatively good agreement for simulated PAR in the woodland. The impact of simplifying assumptions regarding leaf angular distributions and optical properties are discussed. Finally, further opportunities which fine-grained drone data can provide in a radiative transfer context are highlighted.</p>


2020 ◽  
Author(s):  
Huan Yu ◽  
Arve Kylling ◽  
Claudia Emde ◽  
Bernhard Mayer ◽  
Kerstin Stebel ◽  
...  

<p>Operational retrievals of tropospheric trace gases from space-borne spectrometers are made using 1D radiative transfer models. To minimize cloud effects generally only partially cloudy pixels are analysed using simplified cloud contamination treatments based on radiometric cloud fraction estimates and photon path length corrections based on oxygen collision pair (O<sub>2</sub>-O<sub>2</sub>) or O<sub>2</sub>A-absorption band measurements. In reality, however, the impact of clouds can be much more complex, involving scattering of clouds in neighbouring pixels and cloud shadow effects. Therefore, to go one step further, other correction methods may be envisaged that use sub-pixel cloud information from co-located imagers. Such methods require an understanding of the impact of clouds on the real 3D radiative transfer. We quantify this impact using the MYSTIC 3D radiative transfer model. The generation of realistic 3D input cloud fields, needed by MYSTIC (or any other 3D radiative transfer model), is non-trivial. We use cloud data generated by the ICOsahedral Non-hydrostatic (ICON) atmosphere model for a region including Germany, the Netherlands and parts of other surrounding countries. The model simulates realistic liquid and ice clouds with a horizontal spatial resolution of 156 m and it has been validated against ground-based and satellite-based observational data.</p><p>As a trace gas example, we study NO<sub>2</sub>, a key tropospheric trace gas measured by the atmospheric Sentinels. The MYSTIC 3D model simulates visible spectra, which are ingested in standard DOAS retrieval algorithms to retrieve the NO<sub>2</sub> column amount. Spectra are simulated for a number of realistic cloud scenarios, snow free surface albedos, and solar and satellite geometries typical of low-earth and geostationary orbits. The retrieved NO<sub>2</sub> vertical column densities (VCD) are compared with the true values to identify conditions where 3D cloud effects lead to significant biases on the NO<sub>2</sub> VCDs. A variety of possible mitigation strategies for such pixels are then explored.</p>


2007 ◽  
Vol 20 (17) ◽  
pp. 4459-4475 ◽  
Author(s):  
C. J. Stubenrauch ◽  
F. Eddounia ◽  
J. M. Edwards ◽  
A. Macke

Abstract Combined simultaneous satellite observations are used to evaluate the performance of parameterizations of the microphysical and optical properties of cirrus clouds used for radiative flux computations in climate models. Atmospheric and cirrus properties retrieved from Television and Infrared Observation Satellite (TIROS-N) Operational Vertical Sounder (TOVS) observations are given as input to the radiative transfer model developed for the Met Office climate model to simulate radiative fluxes at the top of the atmosphere (TOA). Simulated cirrus shortwave (SW) albedos are then compared to those retrieved from collocated Scanner for Radiation Budget (ScaRaB) observations. For the retrieval, special care has been given to angular direction models. Three parameterizations of cirrus ice crystal optical properties are represented in the Met Office radiative transfer model. These parameterizations are based on different physical approximations and different hypotheses on crystal habit. One parameterization assumes pristine ice crystals and two ice crystal aggregates. By relating the cirrus ice water path (IWP) retrieved from the effective infrared emissivity to the cirrus SW albedo, differences between the parameterizations are amplified. This study shows that pristine crystals seem to be plausible only for cirrus with IWP less than 30 g m−2. For larger IWP, ice crystal aggregates lead to cirrus SW albedos in better agreement with the observations. The data also indicate that climate models should allow the cirrus effective ice crystal diameter (De) to increase with IWP, especially in the range up to 30 g m−2. For cirrus with IWP less than 20 g m−2, this would lead to SW albedos that are about 0.02 higher than the ones of a constant De of 55 μm.


Sign in / Sign up

Export Citation Format

Share Document