scholarly journals Mapping of coupling hot spots of satellite derived latent heat flux in indian agro-climatic regions

Author(s):  
I. Choudhury

This study focuses on the understanding and mapping of coupling hotspots of LE versus terrestrial and meteorological parameters. Single source surface energy balance model was used to derive surface energy balance parameters. Agro climatic region wise monthly information of terrestrial, energy balance and meteorological parameters were derived during June- September from decadal analysis of MODIS data (2003&ndash;2012) over India (68–100°E, 5–40°N) at 5 km spatial resolution. Information on rainfall was obtained from gridded rainfall data (1° &times; 1° spatial resolution) from Indian Meteorological Department (IMD). The spatiotemporal variability of the parameters such as rainfall, evapotranspiration (ET), evaporative fraction (EF), soil water index (SWI), land surface temperature (LST) and air temperature (T<sub>a</sub>) showed strong influence on seasonal LE fluctuation. LE showed positive linear coupling with ET (0.52 <R<sup>2</sup> ≤ 0.91), EF (0.79 ≤ R<sup>2</sup> ≤ 0.96), SWI (0.80 ≤ R<sup>2</sup> ≤ 0.93) and negative exponential coupling with LST (0.63 ≤ R<sup>2</sup> ≤ 0.87), T<sub>a</sub> (0.55 < R<sup>2</sup> ≤ 0.83). The pixel based knowledge of the parameters was incorporated into hierarchical decision rule algorithm and pixel-by-pixel segmentation of monthly coupling of LE versus parameters (ET, EF, SWI, LST, T<sub>a</sub>) was generated. The rainfall zonations in a spatiotemporal domain were done based on the LE couplings that clearly demarcated the highest (West Coast Plains and Hills Region, Himalayan region), moderate (Gangetic Plains and Hills Regions, and the Plateau and Hills Regions) and lowest rainfall (Western dry region) areas. The transition of zone-wise availability of rainfall (both surplus and deficient) can be very well understood from the seasonal dynamics of the LE couplings.

2014 ◽  
Vol 14 (10) ◽  
pp. 14471-14518 ◽  
Author(s):  
X. Chen ◽  
Z. Su ◽  
Y. Ma ◽  
S. Liu ◽  
Q. Yu ◽  
...  

Abstract. In the absence of high resolution estimates of the components of surface energy balance for China, we developed an algorithm based on the surface energy balance system (SEBS) to generate a dataset of land-surface energy and water fluxes on a monthly time scale from 2001 to 2010 at a 0.1° × 0.1° spatial resolution by using multi-satellite and meteorological forcing data. A remote-sensing-based method was developed to estimate canopy height, which was used to calculate roughness length and flux dynamics. The land-surface flux dataset was validated against "ground-truth" observations from 11 flux tower stations in China. The estimated fluxes correlate well with the stations' measurements for different vegetation types and climatic conditions (average bias = 15.3 W m−2, RMSE = 26.4 W m−2). The quality of the data product was also assessed against the GLDAS dataset. The results show that our method is efficient for producing a high-resolution dataset of surface energy flux for the Chinese landmass from satellite data. The validation results demonstrate that more accurate downward long-wave radiation datasets are needed to be able to accurately estimate turbulent fluxes and evapotranspiration when using the surface energy balance model. Trend analysis of land-surface radiation and energy exchange fluxes revealed that the Tibetan Plateau has undergone relatively stronger climatic change than other parts of China during the last 10 years. The capability of the dataset to provide spatial and temporal information on water-cycle and land–atmosphere interactions for the Chinese landmass is examined. The product is free to download for studies of the water cycle and environmental change in China.


2010 ◽  
Vol 14 (3) ◽  
pp. 491-504 ◽  
Author(s):  
X. Xin ◽  
Q. Liu

Abstract. A Two-layer Surface Energy Balance Parameterization Scheme (TSEBPS) is proposed for the estimation of surface heat fluxes using Thermal Infrared (TIR) data over sparsely vegetated surfaces. TSEBPS is based on the theory of the classical two-layer energy balance model, as well as a set of new formulations derived from assumption of the energy balance at limiting cases. Two experimental data sets are used to assess the reliabilities of TSEBPS. Based on these case studies, TSEBPS has proven to be capable of estimating heat fluxes at vegetation surfaces with acceptable accuracy. The uncertainties in the estimated heat fluxes are comparable to in-situ measurement uncertainties.


2009 ◽  
Vol 6 (6) ◽  
pp. 6795-6832
Author(s):  
X. Xin ◽  
Q. Liu

Abstract. A Two-layer Surface Energy Balance Parameterization Scheme (TSEBPS) is proposed for the estimation of surface heat fluxes using thermal infrared (TIR) data over sparsely vegetated surfaces. TSEBPS is based on the theory of the classical two-layer energy balance model, as well as a set of new formulations derived from assumption of the energy balance at limiting cases. Two experimental data sets are used to assess the reliabilities of TSEBPS. Based on these case studies, TSEBPS has proven to be capable of estimating heat fluxes at vegetation surfaces with acceptable accuracy. The uncertainties in the estimated heat fluxes are comparable to in-situ measurement uncertainties.


2020 ◽  
Vol 242 ◽  
pp. 111751 ◽  
Author(s):  
Mohammad Karimi Firozjaei ◽  
Qihao Weng ◽  
Chunhong Zhao ◽  
Majid Kiavarz ◽  
Linlin Lu ◽  
...  

2021 ◽  
pp. 1-19
Author(s):  
Rebecca L. Stewart ◽  
Matthew Westoby ◽  
Francesca Pellicciotti ◽  
Ann Rowan ◽  
Darrel Swift ◽  
...  

Abstract Surface energy-balance models are commonly used in conjunction with satellite thermal imagery to estimate supraglacial debris thickness. Removing the need for local meteorological data in the debris thickness estimation workflow could improve the versatility and spatiotemporal application of debris thickness estimation. We evaluate the use of regional reanalysis data to derive debris thickness for two mountain glaciers using a surface energy-balance model. Results forced using ERA-5 agree with AWS-derived estimates to within 0.01 ± 0.05 m for Miage Glacier, Italy, and 0.01 ± 0.02 m for Khumbu Glacier, Nepal. ERA-5 data were then used to estimate spatiotemporal changes in debris thickness over a ~20-year period for Miage Glacier, Khumbu Glacier and Haut Glacier d'Arolla, Switzerland. We observe significant increases in debris thickness at the terminus for Haut Glacier d'Arolla and at the margins of the expanding debris cover at all glaciers. While simulated debris thickness was underestimated compared to point measurements in areas of thick debris, our approach can reconstruct glacier-scale debris thickness distribution and its temporal evolution over multiple decades. We find significant changes in debris thickness over areas of thin debris, areas susceptible to high ablation rates, where current knowledge of debris evolution is limited.


2020 ◽  
pp. 1-16
Author(s):  
Tim Hill ◽  
Christine F. Dow ◽  
Eleanor A. Bash ◽  
Luke Copland

Abstract Glacier surficial melt rates are commonly modelled using surface energy balance (SEB) models, with outputs applied to extend point-based mass-balance measurements to regional scales, assess water resource availability, examine supraglacial hydrology and to investigate the relationship between surface melt and ice dynamics. We present an improved SEB model that addresses the primary limitations of existing models by: (1) deriving high-resolution (30 m) surface albedo from Landsat 8 imagery, (2) calculating shadows cast onto the glacier surface by high-relief topography to model incident shortwave radiation, (3) developing an algorithm to map debris sufficiently thick to insulate the glacier surface and (4) presenting a formulation of the SEB model coupled to a subsurface heat conduction model. We drive the model with 6 years of in situ meteorological data from Kaskawulsh Glacier and Nàłùdäy (Lowell) Glacier in the St. Elias Mountains, Yukon, Canada, and validate outputs against in situ measurements. Modelled seasonal melt agrees with observations within 9% across a range of elevations on both glaciers in years with high-quality in situ observations. We recommend applying the model to investigate the impacts of surface melt for individual glaciers when sufficient input data are available.


Sign in / Sign up

Export Citation Format

Share Document