scholarly journals BORDERLESS GEOSPATIAL WEB (BOLEGWEB)

Author(s):  
V. Cetl ◽  
T. Kliment ◽  
M. Kliment

The effective access and use of geospatial information (GI) resources acquires a critical value of importance in modern knowledge based society. Standard web services defined by Open Geospatial Consortium (OGC) are frequently used within the implementations of spatial data infrastructures (SDIs) to facilitate discovery and use of geospatial data. This data is stored in databases located in a layer, called the invisible web, thus are ignored by search engines. SDI uses a catalogue (discovery) service for the web as a gateway to the GI world through the metadata defined by ISO standards, which are structurally diverse to OGC metadata. Therefore, a crosswalk needs to be implemented to bridge the OGC resources discovered on mainstream web with those documented by metadata in an SDI to enrich its information extent. A public global wide and user friendly portal of OGC resources available on the web ensures and enhances the use of GI within a multidisciplinary context and bridges the geospatial web from the end-user perspective, thus opens its borders to everybody. <br><br> Project “Crosswalking the layers of geospatial information resources to enable a borderless geospatial web” with the acronym BOLEGWEB is ongoing as a postdoctoral research project at the Faculty of Geodesy, University of Zagreb in Croatia (http://bolegweb.geof.unizg.hr/). The research leading to the results of the project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013) under Marie Curie FP7-PEOPLE-2011-COFUND. The project started in the November 2014 and is planned to be finished by the end of 2016. This paper provides an overview of the project, research questions and methodology, so far achieved results and future steps.

Author(s):  
V. Cetl ◽  
T. Kliment ◽  
M. Kliment

The effective access and use of geospatial information (GI) resources acquires a critical value of importance in modern knowledge based society. Standard web services defined by Open Geospatial Consortium (OGC) are frequently used within the implementations of spatial data infrastructures (SDIs) to facilitate discovery and use of geospatial data. This data is stored in databases located in a layer, called the invisible web, thus are ignored by search engines. SDI uses a catalogue (discovery) service for the web as a gateway to the GI world through the metadata defined by ISO standards, which are structurally diverse to OGC metadata. Therefore, a crosswalk needs to be implemented to bridge the OGC resources discovered on mainstream web with those documented by metadata in an SDI to enrich its information extent. A public global wide and user friendly portal of OGC resources available on the web ensures and enhances the use of GI within a multidisciplinary context and bridges the geospatial web from the end-user perspective, thus opens its borders to everybody. <br><br> Project “Crosswalking the layers of geospatial information resources to enable a borderless geospatial web” with the acronym BOLEGWEB is ongoing as a postdoctoral research project at the Faculty of Geodesy, University of Zagreb in Croatia (http://bolegweb.geof.unizg.hr/). The research leading to the results of the project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013) under Marie Curie FP7-PEOPLE-2011-COFUND. The project started in the November 2014 and is planned to be finished by the end of 2016. This paper provides an overview of the project, research questions and methodology, so far achieved results and future steps.


Author(s):  
Willington Siabato ◽  
Javier Moya-Honduvilla ◽  
Miguel Ángel Bernabé-Poveda

The way aeronautical information is managed and disseminated must be modernized. Current aeronautical information services (AIS) methods for storing, publishing, disseminating, querying, and updating the volume of data required for the effective management of air traffic control have become obsolete. This does not contribute to preventing airspace congestion, which turns into a limiting factor for economic growth and generates negative effects on the environment. Owing to this, some work plans for improving AIS and air traffic flow focus on data and services interoperability to allow an efficient and coordinated use and exchange of aeronautical information. Geographic information technologies (GIT) and spatial data infrastructures (SDI) are comprehensive technologies upon which any service that integrates geospatial information can rely. The authors are working on the assumption that the foundations and underlying technologies of GIT and SDI can be applied to support aeronautical data and services, considering that aeronautical information contains a large number of geospatial components. This article presents the design, development, and implementation of a Web-based system architecture to evolve and enhance the use and management of aeronautical information in any context, e.g., in aeronautical charts on board, in control towers, and in aeronautical information services. After conducting a study into the use of aeronautical information, it was found that users demand specific requirements regarding reliability, flexibility, customization, integration, standardization, and cost reduction. These issues are not being addressed with existing systems and methods. A system compliant with geographic standards (OGC, ISO) and aeronautical regulations (ICAO, EUROCONTROL) and supported by a scalable and distributed Web architecture is proposed. This proposal would solve the shortcomings identified in the study and provide aeronautical information management (AIM) with new methods and strategies. In order to seek aeronautical data and services interoperability, a comprehensive aeronautical metadata profile has been defined. This proposal facilitates the use, retrieval, updating, querying, and editing of aeronautical information, as well as its exchange between different private and public institutions. The tests and validations have shown that the proposal is achievable.


2018 ◽  
Vol 7 (10) ◽  
pp. 385 ◽  
Author(s):  
Matthes Rieke ◽  
Lorenzo Bigagli ◽  
Stefan Herle ◽  
Simon Jirka ◽  
Alexander Kotsev ◽  
...  

The nature of contemporary spatial data infrastructures lies in the provision of geospatial information in an on-demand fashion. Although recent applications identified the need to react to real-time information in a time-critical way, research efforts in the field of geospatial Internet of Things in particular have identified substantial gaps in this context, ranging from a lack of standardisation for event-based architectures to the meaningful handling of real-time information as “events”. This manuscript presents work in the field of event-driven architectures as part of spatial data infrastructures with a particular focus on sensor networks and the devices capturing in-situ measurements. The current landscape of spatial data infrastructures is outlined and used as the basis for identifying existing gaps that retain certain geospatial applications from using real-time information. We present a selection of approaches—developed in different research projects—to overcome these gaps. Being designed for specific application domains, these approaches share commonalities as well as orthogonal solutions and can build the foundation of an overall event-driven spatial data infrastructure.


2020 ◽  
Vol 208 ◽  
pp. 08007
Author(s):  
Anatoliy A. Yamashkin ◽  
Stanislav A. Yamashkin ◽  
Milan M. Radovanovic

The article discusses the key aspects of the development of spatial data infrastructures and models of spatio-temporal data based on the study of geosystems, as well as ensuring the updating of the geospatial storage of information based on Earth remote sensing data. The authors have shown that for the formation of the software and hardware infrastructure of a digital storage of spatial data, it is advisable to follow an organized technological process. At the same time, spatial data warehouses should provide system integration of data with spatial and temporal reference. The solution to the problems of visualization and dissemination of spatial data should be based on the effective use of geoportal systems. It is concluded that the development of databases of digital SDIs and geoportal systems is associated with the development of methods and algorithms for the conjugate analysis of the peculiarities of the interaction of natural, social and production systems, complex interpretation of large arrays of spatial data and forecasting the development of natural and natural-man-made processes.


Author(s):  
Matthes Rieke ◽  
Lorenzo Bigagli ◽  
Stefan Herle ◽  
Simon Jirka ◽  
Alexander Kotsev ◽  
...  

The nature of contemporary Spatial Data Infrastructures lies in the provision of geospatial information in an on-demand fashion. Though recent applications identified the need to react to real-time information in a time-critical way. In particular, research efforts in the field of geospatial Internet of Things have identified substantial gaps in this context, ranging from a lack of standardization for event-based architectures to the meaningful handling of real-time information as ''events''. This manuscript presents work in the field of Event-driven Spatial Data Infrastructures with a particular focus on sensor networks and the devices capturing in-situ measurements. The current landscape of Spatial Data Infrastructures is outlined and used as the basis for identifying existing gaps that retain certain geospatial applications from using real-time information. We present a selection of approaches - developed in different research projects - to overcome these gaps. Being designed for specific application domains, these approaches share commonalities as well as orthogonal solutions and can build the foundation of an overall Event-driven Spatial Data Infrastructure.


2020 ◽  
Vol 9 (2) ◽  
pp. 62 ◽  
Author(s):  
Bénédicte Bucher ◽  
Esa Tiainen ◽  
Thomas Ellett von Brasch ◽  
Paul Janssen ◽  
Dimitris Kotzinos ◽  
...  

Spatial Data Infrastructures (SDIs) are a key asset for Europe. This paper concentrates on unsolved issues in SDIs in Europe related to the management of semantic heterogeneities. It studies contributions and competences from two communities in this field: cartographers, authoritative data providers, and geographic information scientists on the one hand, and computer scientists working on the Web of Data on the other. During several workshops organized by the EuroSDR and Eurogeographics organizations, the authors analyzed their complementarity and discovered reasons for the difficult collaboration between these communities. They have different and sometimes conflicting perspectives on what successful SDIs should look like, as well as on priorities. We developed a proposal to integrate both perspectives, which is centered on the elaboration of an open European Geographical Knowledge Graph. Its structure reuses results from the literature on geographical information ontologies. It is associated with a multifaceted roadmap addressing interrelated aspects of SDIs.


Author(s):  
Gloria Bordogna ◽  
Francesco Bucci ◽  
Paola Carrara ◽  
Monica Pepe ◽  
Anna Rampini

Spatial Data Infrastructures (SDI) allow users connected to the Internet to share and access remote and distributed heterogeneous geodata that are managed by their providers at their own Web sites. In SDIs, available geodata can be found via standard discovery geo-services that makes available query facilities of a metadata catalog. By expressing precise selection conditions on the values of the metadata collected in the catalog, the user can discover interesting and relevant geodata and then access them by means of the services of the SDI. An important dimension of geodata that often concerns such users’ requests is the temporal information that can have multiple semantics. Current practice to perform geodata discovery in SDIs is inadequate for several reasons. First of all, with respect to the temporal characterization, available recommendations for metadata specification, for example, the INSPIRE Directive of the European community do not consider the multiple semantics of the temporal metadata. To this aim, this chapter proposes to enrich the current temporal metadata with the possibility to indicate temporal metadata related to both the observations, i.e., the geodata, the observed event, i.e., the objects in the geodata, and the temporal resolution of observations, i.e., their timestamps. The chapter introduces also a proposal to manage temporal series of geodata observed at different dates. Moreover, in order to represent the uncertain and incomplete knowledge of the time information on the available geodata, the chapter proposes a representation for imperfect temporal metadata within the fuzzy set framework. Another issue that is faced in this chapter is the inadequacy of current discovery service query facilities: in order to obtain a list of geodata results, corresponding values of metadata must exactly match the query conditions. To allow more flexibility, the chapter proposes to adopt the framework of fuzzy databases to allow expressing soft selection conditions, i.e., tolerant to under-satisfaction, so as to retrieve geodata in decreasing order of relevance to the user needs. The chapter illustrates this proposal by an example.


2020 ◽  
Vol 9 (7) ◽  
pp. 438 ◽  
Author(s):  
Dariusz Lorek ◽  
Tymoteusz Horbiński

In the article, authors have analyzed cartographic materials presenting the spatial development of Gliwice with the use of multimedia tools. The materials prove that this area has played an important part in the road system of the region, country and even part of Europe since the 19th century. The six maps from the studied area were analyzed e.g., the Urmesstischblätter map, polish topographic maps, and the OpenStreetMap. Based on these maps and their legends, vectorization of the main roads of the analyzed area was carried out. The evolution of the main road corridors on the six maps was analyzed with respect to the location of the European freeway junction (A1/A4), constituting a basis for the web map. According to the authors, the use of the interactive web map is the most comprehensive method of all technologies used by modern cartography. Spatial data collected from different cartographic publications (from the first half of the 19th century till the present) consider the most significant aspects of changes in the road network of the analyzed area in a detailed and user-friendly way.


2019 ◽  
pp. 161-190 ◽  
Author(s):  
Sven Schade ◽  
Carlos Granell ◽  
Glenn Vancauwenberghe ◽  
Carsten Keßler ◽  
Danny Vandenbroucke ◽  
...  

Abstract Geospatial information infrastructures (GIIs) provide the technological, semantic, organizational and legal structure that allow for the discovery, sharing, and use of geospatial information (GI). In this chapter, we introduce the overall concept and surrounding notions such as geographic information systems (GIS) and spatial data infrastructures (SDI). We outline the history of GIIs in terms of the organizational and technological developments as well as the current state-of-art, and reflect on some of the central challenges and possible future trajectories. We focus on the tension between increased needs for standardization and the ever-accelerating technological changes. We conclude that GIIs evolved as a strong underpinning contribution to implementation of the Digital Earth vision. In the future, these infrastructures are challenged to become flexible and robust enough to absorb and embrace technological transformations and the accompanying societal and organizational implications. With this contribution, we present the reader a comprehensive overview of the field and a solid basis for reflections about future developments.


Author(s):  
Alexander Kotsev ◽  
Katherina Schleidt ◽  
Steve Liang ◽  
Hylke van der Schaaf ◽  
Tania Khalafbeigi ◽  
...  

Spatial Data Infrastructures (SDI) established during the past two decades &rsquo;unlocked&rsquo; heterogeneous geospatial datasets. The European Union INSPIRE Directive laid down the foundation of a pan-European SDI where thousands of public sector data providers make their data available for cross-border and cross-domain reuse. At the same time, SDIs should inevitably adopt new technology and standards in order to remain fit for purpose and address in the best possible way the needs of different stakeholders (government, businesses and citizens). Some of the recurring technical requirements raised by SDI stakeholders include (i) the need for adoption of RESTful architectures, together with (ii) alternative (to GML) data encodings, such as JavaScript Object Notation (JSON) and binary exchange formats, and (iii) adoption of asynchronous publish-subscribe-based messaging protocols. The newly established OGC standard SensorThings API is particularly interesting to investigate for INSPIRE, as it addresses together all three topics. In this manuscript, we provide our synthesised perspective on the necessary steps for the OGC SensorThings API standard to be considered as a solution that meets the legal obligations stemming out of the INSPIRE Directive. We share our perspective on what should be done concerning (i) data encoding, and (ii) the use of SensorThings API as a download service.


Sign in / Sign up

Export Citation Format

Share Document