scholarly journals MODELS FOR PHOTOGRAMMETRIC PROCESSING OF INFORMATION FROM “RESOURCE-P” SATELLITES

Author(s):  
V. Poshekhonov ◽  
V. Eremeev ◽  
А. Kuznetcov ◽  
A. Kochergin

The present paper provides information about imagery and navigation systems of the Russian high resolution satellites "Resource- P". Models of image geolocation used for photogrammetric processing of information from all types of imagery systems are designed. Design of these models is based on two task solutions: correct processing of the measurement information and geometric calibration of the imagery systems. <br><br> It is shown that for high-precision interior orientation parameters adjustment of the high-resolution "Geoton" instrument the method of self-calibration should be used. The technology of calibration activities is considered. Distinctive features of calibration of the hyperspectral and wide-swath imagery systems are noted. It is represented in the paper that after calibration the root mean square error (RMSE) of measured geodetic coordinates of objects on images do not exceed 10 m. <br><br> Examples of the obtained models practical application for photogrammetric processing of images from “Resource-P” satellites are shown.

Author(s):  
V. Poshekhonov ◽  
V. Eremeev ◽  
А. Kuznetcov ◽  
A. Kochergin

The present paper provides information about imagery and navigation systems of the Russian high resolution satellites "Resource- P". Models of image geolocation used for photogrammetric processing of information from all types of imagery systems are designed. Design of these models is based on two task solutions: correct processing of the measurement information and geometric calibration of the imagery systems. <br><br> It is shown that for high-precision interior orientation parameters adjustment of the high-resolution "Geoton" instrument the method of self-calibration should be used. The technology of calibration activities is considered. Distinctive features of calibration of the hyperspectral and wide-swath imagery systems are noted. It is represented in the paper that after calibration the root mean square error (RMSE) of measured geodetic coordinates of objects on images do not exceed 10 m. <br><br> Examples of the obtained models practical application for photogrammetric processing of images from “Resource-P” satellites are shown.


Author(s):  
M. A. Musci ◽  
I. Aicardi ◽  
P. Dabove ◽  
A. M. Lingua

<p><strong>Abstract.</strong> One of the main tools for high resolution remote sensing and photogrammetry is the lightweight hyperspectral frame camera, that is used in several application areas such as precision agriculture, forestry, and environmental monitoring. Among these types of sensors, the Rikola (which is based on a Fabry–Perot interferometer (FPI) and produced by Senop) is one of the latest innovations. Due to its internal geometry, there are several issues to be addressed for the appropriate definition and estimation of the inner orientation parameters (IOPs). The main problems concern the possibility to change every time the sequence of the bands and to assess the reliability of the IOPs. This work focuses the attention on the assessment of the IOPs definition for each sensor, considering the impact of environmental conditions (e.g., different time, exposure, brightness) and different configurations of the FPI camera, in order to rebuild an undistorted hypercube for image processing and object estimation. The aim of this work is to understand if the IOPs are stable over the time and if and which bands can be used as reference for the calculation of the inner parameters for each sensor, considering different environmental configurations and surveys, from terrestrial to aerial applications. Preliminary performed tests showed that the focal length percentage variation among the bands of different experiments is around 1%.</p>


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 31
Author(s):  
Mariusz Specht

Positioning systems are used to determine position coordinates in navigation (air, land and marine). The accuracy of an object’s position is described by the position error and a statistical analysis can determine its measures, which usually include: Root Mean Square (RMS), twice the Distance Root Mean Square (2DRMS), Circular Error Probable (CEP) and Spherical Probable Error (SEP). It is commonly assumed in navigation that position errors are random and that their distribution are consistent with the normal distribution. This assumption is based on the popularity of the Gauss distribution in science, the simplicity of calculating RMS values for 68% and 95% probabilities, as well as the intuitive perception of randomness in the statistics which this distribution reflects. It should be noted, however, that the necessary conditions for a random variable to be normally distributed include the independence of measurements and identical conditions of their realisation, which is not the case in the iterative method of determining successive positions, the filtration of coordinates or the dependence of the position error on meteorological conditions. In the preface to this publication, examples are provided which indicate that position errors in some navigation systems may not be consistent with the normal distribution. The subsequent section describes basic statistical tests for assessing the fit between the empirical and theoretical distributions (Anderson-Darling, chi-square and Kolmogorov-Smirnov). Next, statistical tests of the position error distributions of very long Differential Global Positioning System (DGPS) and European Geostationary Navigation Overlay Service (EGNOS) campaigns from different years (2006 and 2014) were performed with the number of measurements per session being 900’000 fixes. In addition, the paper discusses selected statistical distributions that fit the empirical measurement results better than the normal distribution. Research has shown that normal distribution is not the optimal statistical distribution to describe position errors of navigation systems. The distributions that describe navigation positioning system errors more accurately include: beta, gamma, logistic and lognormal distributions.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2947
Author(s):  
Ming Hua ◽  
Kui Li ◽  
Yanhong Lv ◽  
Qi Wu

Generally, in order to ensure the reliability of Navigation system, vehicles are usually equipped with two or more sets of inertial navigation systems (INSs). Fusion of navigation measurement information from different sets of INSs can improve the accuracy of autonomous navigation effectively. However, due to the existence of misalignment angles, the coordinate axes of different systems are usually not in coincidence with each other absolutely, which would lead to serious problems when integrating the attitudes information. Therefore, it is necessary to precisely calibrate and compensate the misalignment angles between different systems. In this paper, a dynamic calibration method of misalignment angles between two systems was proposed. This method uses the speed and attitude information of two sets of INSs during the movement of the vehicle as measurements to dynamically calibrate the misalignment angles of two systems without additional information sources or other external measuring equipment, such as turntable. A mathematical model of misalignment angles between two INSs was established. The simulation experiment and the INSs vehicle experiments were conducted to verify the effectiveness of the method. The results show that the calibration accuracy of misalignment angles between the two sets of systems can reach to 1″ while using the proposed method.


Author(s):  
Jianlai Chen ◽  
Buge Liang ◽  
Junchao Zhang ◽  
De-Gui Yang ◽  
Yuhui Deng ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3580 ◽  
Author(s):  
Jie Wang ◽  
Ke-Hong Zhu ◽  
Li-Na Wang ◽  
Xing-Dong Liang ◽  
Long-Yong Chen

In recent years, multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems, which can promote the performance of 3D imaging, high-resolution wide-swath remote sensing, and multi-baseline interferometry, have received considerable attention. Several papers on MIMO-SAR have been published, but the research of such systems is seriously limited. This is mainly because the superposed echoes of the multiple transmitted orthogonal waveforms cannot be separated perfectly. The imperfect separation will introduce ambiguous energy and degrade SAR images dramatically. In this paper, a novel orthogonal waveform separation scheme based on echo-compression is proposed for airborne MIMO-SAR systems. Specifically, apart from the simultaneous transmissions, the transmitters are required to radiate several times alone in a synthetic aperture to sense their private inner-aperture channels. Since the channel responses at the neighboring azimuth positions are relevant, the energy of the solely radiated orthogonal waveforms in the superposed echoes will be concentrated. To this end, the echoes of the multiple transmitted orthogonal waveforms can be separated by cancelling the peaks. In addition, the cleaned echoes, along with original superposed one, can be used to reconstruct the unambiguous echoes. The proposed scheme is validated by simulations.


2009 ◽  
Vol 69-70 ◽  
pp. 580-584 ◽  
Author(s):  
D.F. Zhang ◽  
Feng Gao

A novel 6-(P-2P-S) parallel robot is put forward. With the characters of some movement decoupling on the orthogonal pose, the robot can be used as the macro manipulator of the macro/micro dual driven robots. The macro manipulator as a high-precision positioning device, it is significant for the practical application and drive train design to research statics. First, the force Jacobian matrix is deduced, which is related to the orientation parameters. Then based on the Jacobian matrix singular value decomposed characteristic, the static force transmission evaluation indicators Kf and Km are defined. Finally, considering structure constraints and parameters, the distribution of evaluation indicators in the orientation workspace is drawn, which provide the theoretical base for the design and applications of the robot. Because of the characters of simple structure, high carrying capacity, less motion inertia, good manufacturability, the 6-(P-2P-S) parallel macro manipulator has been designed.


2016 ◽  
Vol 62 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Adam Chromy

Abstract This paper deals with application of 3D scanning technology in medicine. Important properties of 3D scanners are discussed with emphasize on medical applications. Construction of medical 3D scanner according to these specifications is described and practical application of its use in medical volumetry is presented. Besides volumetry, such 3D scanner is usable for many other purposes, like monitoring of recovery process, ergonomic splint manufacturing or inflammation detection. 3D scanning introduces novel volumetric method, which is compared with standard methods. The new method is more accurate compared to present ones. Principles of this method are discussed in paper and its accuracy is evaluated and experimentally verified.


Sign in / Sign up

Export Citation Format

Share Document