scholarly journals Horizontal vibration response analysis of ultra-high-speed elevators by considering the effect of wind load on buildings

2021 ◽  
Vol 12 (2) ◽  
pp. 1083-1092
Author(s):  
Guangjiu Qin ◽  
Shuohua Zhang ◽  
Hao Jing

Abstract. At present, the wind-induced vibration effects of super-high-rise buildings caused by wind loads can no longer be ignored. The wind-induced vibration effect of super-high-rise buildings will inevitably cause the vibration of ultra-high-speed elevators. However, for the study of the vibration characteristics of ultra-high-speed elevators, the wind-induced vibration effect of the ultra-high-speed elevator is often ignored. Based on Bernoulli–Euler theory, the forced vibration differential equation of elevator guide rail was established, and the vibration equation of elevator guide shoe and car was established by using the Darren Bell principle. The coupled vibration model of the guide rail, guide shoes, and car can be obtained through the relationship of force and relative displacement among these components. Based on the model, the effects of wind pressure and building height on the horizontal vibration of the ultra-high-speed guideway and passenger comfort were analyzed. The results showed that the influence of the wind load on the vibration of ultra-high-speed elevator can no longer be disregarded, and the maximum horizontal vibration acceleration of the guide rail is positively correlated with the height of building. The vibration acceleration of the same height rail increases with the increase in wind pressure. The vibration dose values (VDVs) increase with the increase in wind pressure and building height, respectively.

2019 ◽  
Vol 20 (3) ◽  
pp. 305 ◽  
Author(s):  
Jie Liu ◽  
Ruijun Zhang ◽  
Qin He ◽  
Qing Zhang

This paper aims to study the horizontal vibration dynamic characteristics of high-speed elevator by considering the combined effect of airflow and guiding system. The relationships of lateral force and overturning moment with horizontal displacement, deflection angle displacement and rated speed of the car are mathematically solved, and the horizontal vibration dynamic model of the car under the two excitations is established. For case model, the natural frequency and horizontal vibration response of the car are studied, and the guide-rail excitation frequency and car natural frequency are compared and analyzed. The results indicate that the higher the rated speed is, the more obvious the resonance phenomenon between the guide-rail and car will be in a certain range; the effect of airflow on horizontal vibration acceleration of the car with a speed lower than 6 m/s is small, but when the speed is over 6 m/s, the airflow will greatly affect the single-peak value of horizontal vibration acceleration, which is approximately a quadratic relationship; the deflection angle displacement has an increasing influence on horizontal vibration dynamic response with the increasing speed. The conclusions provide a theoretical guidance for the research and control on the horizontal vibration of high-speed elevator.


2021 ◽  
Vol 54 (3-4) ◽  
pp. 360-373
Author(s):  
Hong Wang ◽  
Mingqin Zhang ◽  
Ruijun Zhang ◽  
Lixin Liu

In order to effectively suppress horizontal vibration of the ultra-high-speed elevator car system. Firstly, considering the nonlinearity of guide shoe, parameter uncertainties, and uncertain external disturbances of the elevator car system, a more practical active control model for horizontal vibration of the 4-DOF ultra-high-speed elevator car system is constructed and the rationality of the established model is verified by real elevator experiment. Secondly, a predictive sliding mode controller based on adaptive fuzzy (PSMC-AF) is proposed to reduce the horizontal vibration of the car system, the predictive sliding mode control law is achieved by optimizing the predictive sliding mode performance index. Simultaneously, in order to decrease the influence of uncertainty of the car system, a fuzzy logic system (FLS) is designed to approximate the compound uncertain disturbance term (CUDT) on-line. Furthermore, the continuous smooth hyperbolic tangent function (HTF) is introduced into the sliding mode switching term to compensate the fuzzy approximation error. The adaptive laws are designed to estimate the error gain and slope parameter, so as to increase the robustness of the system. Finally, numerical simulations are conducted on some representative guide rail excitations and the results are compared to the existing solution and passive system. The analysis has confirmed the effectiveness and robustness of the proposed control method.


2019 ◽  
Vol 43 (4) ◽  
pp. 535-543 ◽  
Author(s):  
Shunxin Cao ◽  
Ruijun Zhang ◽  
Shuohua Zhang ◽  
Shuai Qiao ◽  
Dongsheng Cong ◽  
...  

Interaction and wear between wheel and rail become increasingly serious with the increase in elevator speed and load. Uneven roller surface, eccentricity of rollers, and the looseness of rail brackets result in serious vibration problems of high-speed and super-high-speed elevators. Therefore, the forced vibration differential equation representing elevator guide rails is established based on Bernoulli–Euler theory, and the vibration equation of the elevator guide shoes and the car is constructed using the Darren Bell principle. Then, the coupled vibration model of guide rail, guide shoes, and car can be obtained using the relationship of force and relative displacement among these components. The roller–rail parameters are introduced into the established coupled vibration model using the model equivalent method. Then, the influence of roller–rail parameters on the horizontal vibration of super-high-speed elevator cars is investigated. Roller eccentricity and the vibration acceleration of the car present a linear correlation, with the amplitude of the car vibration acceleration increasing with the eccentricity of the roller. A nonlinear relationship exists between the surface roughness of the roller and the vibration acceleration of the car. Increased continuous loosening of the guide rail results in severe vibration of the car at the loose position of the support.


2019 ◽  
Vol 19 (09) ◽  
pp. 1950103 ◽  
Author(s):  
Zhe Yang ◽  
Qing Zhang ◽  
Ruijun Zhang ◽  
Luzhong Zhang

For a super high-speed elevator running in a hoistway, it will encounter air flows at high speed. The transverse force and pitching moment generated by the air intensify the transverse vibration of the elevator. In this paper, by fully considering the guide rail excitation and air disturbance, the transverse vibration of a super high-speed elevator under different working conditions is examined. Based on the Lagrange principle, a four degree-of-freedom (DOF) model is adopted for the transverse vibration of the elevator. Combined with computational fluid dynamics (CFD), the effects of various parameters corresponding to different working conditions on the aerodynamic forces acting on the transverse surfaces (the surfaces facing the guide rail) of the car is analyzed. Finally, the Newmark-[Formula: see text] method is employed to analyze the effect of air disturbances on the transverse vibration acceleration of the car under different working conditions. The results show that when the car is symmetrically positioned, the aerodynamic characteristics on both transverse surfaces of the car also appear to be symmetric. The operating speed and the distance between the car’s transverse surface and the hoistway wall (DCH) have a minor effect on the transverse vibration of the car, and the car is basically in a state of forced balance in the transverse direction. However, once the car deviates from the symmetric position, the balance will be violated, and the transverse resultant force and moment of the car will increase with the increase in the deviation amount. Among all these factors, the influence of the rotation angle on the elevator’s vibration acceleration is the most significant.


2009 ◽  
Vol E92-C (7) ◽  
pp. 922-928 ◽  
Author(s):  
Kikuo MAKITA ◽  
Kazuhiro SHIBA ◽  
Takeshi NAKATA ◽  
Emiko MIZUKI ◽  
Sawaki WATANABE

Author(s):  
Ryoken Masuda ◽  
Manabu Horiuchi ◽  
Mitsuhide Sato ◽  
Yinggang Bu ◽  
Masami Nirei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document