scholarly journals New tsunami damage functions developed in the framework of SCHEMA project: application to European-Mediterranean coasts

2011 ◽  
Vol 11 (10) ◽  
pp. 2835-2846 ◽  
Author(s):  
N. Valencia ◽  
A. Gardi ◽  
A. Gauraz ◽  
F. Leone ◽  
R. Guillande

Abstract. In the framework of the European SCenarios for tsunami Hazard-induced Emergencies MAnagement (SCHEMA) project (www.schemaproject.org), we empirically developed new tsunami damage functions to be used for quantifying the potential tsunami damage to buildings along European-Mediterranean coasts. Since no sufficient post-tsunami observations exist in the Mediterranean areas, we based our work on data collected by several authors in Banda Aceh (Indonesia) after the 2004 Indian Ocean tsunami. Obviously, special attention has been paid in focusing on Indonesian buildings which present similarities (in structure, construction material, number of storeys) with the building typologies typical of the European-Mediterranean areas. An important part of the work consisted in analyzing, merging, and interpolating the post-disaster observations published by three independent teams in order to obtain the spatial distribution of flow depths necessary to link the flow-depth hazard parameter to the damage level observed on buildings. Then we developed fragility curves (showing the cumulative probability to have, for each flow depth, a damage level equal-to or greater-than a given threshold) and damage curves (giving the expected damage level) for different classes of buildings. It appears that damage curves based on the weighted mean damage level and the maximum flow depth are the most appropriate for producing, under GIS, expected damage maps for different tsunami scenarios.

2021 ◽  
Vol 21 (8) ◽  
pp. 2313-2344
Author(s):  
Elisa Lahcene ◽  
Ioanna Ioannou ◽  
Anawat Suppasri ◽  
Kwanchai Pakoksung ◽  
Ryan Paulik ◽  
...  

Abstract. Indonesia has experienced several tsunamis triggered by seismic and non-seismic (i.e., landslides) sources. These events damaged or destroyed coastal buildings and infrastructure and caused considerable loss of life. Based on the Global Earthquake Model (GEM) guidelines, this study assesses the empirical tsunami fragility to the buildings inventory of the 2018 Sunda Strait, 2018 Sulawesi–Palu, and 2004 Indian Ocean (Khao Lak–Phuket, Thailand) tsunamis. Fragility curves represent the impact of tsunami characteristics on structural components and express the likelihood of a structure reaching or exceeding a damage state in response to a tsunami intensity measure. The Sunda Strait and Sulawesi–Palu tsunamis are uncommon events still poorly understood compared to the Indian Ocean tsunami (IOT), and their post-tsunami databases include only flow depth values. Using the TUNAMI two-layer model, we thus reproduce the flow depth, the flow velocity, and the hydrodynamic force of these two tsunamis for the first time. The flow depth is found to be the best descriptor of tsunami damage for both events. Accordingly, the building fragility curves for complete damage reveal that (i) in Khao Lak–Phuket, the buildings affected by the IOT sustained more damage than the Sunda Strait tsunami, characterized by shorter wave periods, and (ii) the buildings performed better in Khao Lak–Phuket than in Banda Aceh (Indonesia). Although the IOT affected both locations, ground motions were recorded in the city of Banda Aceh, and buildings could have been seismically damaged prior to the tsunami's arrival, and (iii) the buildings of Palu City exposed to the Sulawesi–Palu tsunami were more susceptible to complete damage than the ones affected by the IOT, in Banda Aceh, between 0 and 2 m flow depth. Similar to the Banda Aceh case, the Sulawesi–Palu tsunami load may not be the only cause of structural destruction. The buildings' susceptibility to tsunami damage in the waterfront of Palu City could have been enhanced by liquefaction events triggered by the 2018 Sulawesi earthquake.


2013 ◽  
Vol 07 (05) ◽  
pp. 1350036 ◽  
Author(s):  
ANAWAT SUPPASRI ◽  
SHUNICHI KOSHIMURA ◽  
FUMIHIKO IMAMURA ◽  
ANAT RUANGRASSAMEE ◽  
PIYAWAT FOYTONG

Although the 2004 Indian Ocean tsunami occurred several years ago and all the building repair and infrastructure reconstruction needed in Thailand to repair the damage caused by the tsunami are complete, there is still a need for damage assessment methods that can be used in future tsunami damage assessments in Thailand and that can possibly be applied to other countries. This study summarizes three methods for assessing tsunami damage, "tsunami damage criteria," "tsunami damage ratios" and "tsunami fragility curves," based on damage data from the 2004 Indian Ocean tsunami in Thailand, and these methods are compared using other tsunami events. Using the data from a field survey of damaged buildings, tsunami damage criteria were summarized for each degree of damage as a function of inundation depth for different building types. Tsunami damage ratios were summarized using building damage data obtained from surveys in the field and reconstruction cost estimates provided by the Thai government. The fragility curves developed were validated based on building performance data obtained from full-scale experiments on buildings and columns. Despite differences in the tsunami characteristics (inundation depth, current velocity and hydrodynamic force), the damage probabilities were nearly the same. The summarized methods might be useful for future tsunami damage assessments and loss estimation in Thailand and serve as guidelines for tsunami damage assessment in other countries.


Author(s):  
Robin Spence ◽  
Sandra Martínez-Cuevas ◽  
Hannah Baker

AbstractThis paper describes CEQID, a database of earthquake damage and casualty data assembled since the 1980s based on post-earthquake damage surveys conducted by a range of research groups. Following 2017–2019 updates, the database contains damage data for more than five million individual buildings in over 1000 survey locations following 79 severely damaging earthquakes worldwide. The building damage data for five broadly defined masonry and reinforced concrete building classes has been assembled and a uniform set of six damage levels assigned. Using estimated peak ground acceleration (PGA) for each survey location based on USGS Shakemap data, a set of lognormal fragility curves has been developed to estimate the probability of exceedance of each damage level for each class, and separate fragility curves for each of five geographical regions are presented. A revised set of fragility curves has also been prepared in which the bias in the curve resulting from the uncertainty in the ground motion parameter has been removed. The uncertainty in the fragility curves is evaluated and discussed and the curves are compared with those from other studies. A resistance index for each class of building is developed and cross-regional comparisons using this resistance index are presented.


2011 ◽  
Vol 11 (1) ◽  
pp. 173-189 ◽  
Author(s):  
A. Suppasri ◽  
S. Koshimura ◽  
F. Imamura

Abstract. The 2004 Indian Ocean tsunami damaged and destroyed numerous buildings and houses in Thailand. Estimation of tsunami impact to buildings from this event and evaluation of the potential risks are important but still in progress. The tsunami fragility curve is a function used to estimate the structural fragility against tsunami hazards. This study was undertaken to develop fragility curves using visual inspection of high-resolution satellite images (IKONOS) taken before and after tsunami events to classify whether the buildings were destroyed or not based on the remaining roof. Then, a tsunami inundation model is created to reconstruct the tsunami features such as inundation depth, current velocity, and hydrodynamic force of the event. It is assumed that the fragility curves are expressed as normal or lognormal distribution functions and the estimation of the median and log-standard deviation is performed using least square fitting. From the results, the developed fragility curves for different types of building materials (mixed type, reinforced concrete and wood) show consistent performance in damage probability and when compared to the existing curves for other locations.


Author(s):  
Rafael Aranguiz ◽  
Oscar Link ◽  
Jose Aliaga ◽  
Oscar Briones ◽  
Ruben Alarcon ◽  
...  

Estimation of the maximum scour depth is important for defining the size and depth of building foundations in order to avoid failure during a tsunami event (Jayaratne, et al 2016). Traditionally, tsunami scour has been studied in laboratory experiments that use solitary waves. However, it has been demonstrated that this type of wave does not represent well a real tsunami (Madsen et al, 2008). In addition, results from field surveys are based on the scour depth after the tsunami event, studying only the maximum flow depth, and ignoring other hydrodynamic features such as velocity and wave period, as well as sediment deposition. The main objective of this research is to estimate maximum tsunami scour around rectangular structures as a function of realistic tsunami variables.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/ykb-JyL7lsE


Author(s):  
Richard A. Posner

The Indian Ocean tsunami of December 2004 focused attention on a type of disaster to which policymakers pay too little attention – a disaster that has a very low or unknown probability of occurring, but that if it does occur creates enormous losses. The flooding of New Orleans in the late summer of 2005 was a comparable event, although the probability of the event was known to be high; the Corps of Engineers estimated its annual probability as 0.33% (Schleifstein and McQuaid, 2002), which implies a cumulative probability of almost 10% over a thirty-year span. The particular significance of the New Orleans flood for catastrophic-risk analysis lies in showing that an event can inflict enormous loss even if the death toll is small – approximately 1/250 of the death toll from the tsunami. Great as that toll was, together with the physical and emotional suffering of survivors, and property damage, even greater losses could be inflicted by other disasters of low (but not negligible) or unknown probability. The asteroid that exploded above Siberia in 1908 with the force of a hydrogen bomb might have killed millions of people had it exploded above a major city. Yet that asteroid was only about 200 feet in diameter, and a much larger one (among the thousands of dangerously large asteroids in orbits that intersect the earth’s orbit) could strike the earth and cause the total extinction of the human race through a combination of shock waves, fire, tsunamis, and blockage of sunlight, wherever it struck. Another catastrophic risk is that of abrupt global warming, discussed later in this chapter. Oddly, with the exception of global warming (and hence the New Orleans flood, to which global warming may have contributed, along with manmade destruction of wetlands and barrier islands that formerly provided some protection for New Orleans against hurricane winds), none of the catastrophes mentioned above, including the tsunami, is generally considered an ‘environmental’ catastrophe. This is odd, since, for example, abrupt catastrophic global change would be a likely consequence of a major asteroid strike.


2010 ◽  
Vol 10 (1) ◽  
pp. 139-148 ◽  
Author(s):  
V. V. Lima ◽  
J. M. Miranda ◽  
M. A. Baptista ◽  
J. Catalão ◽  
M. Gonzalez ◽  
...  

Abstract. Coastal areas are highly exposed to natural hazards associated with the sea. In all cases where there is historical evidence for devastating tsunamis, as is the case of the southern coasts of the Iberian Peninsula, there is a need for quantitative hazard tsunami assessment to support spatial planning. Also, local authorities must be able to act towards the population protection in a preemptive way, to inform "what to do" and "where to go" and in an alarm, to make people aware of the incoming danger. With this in mind, we investigated the inundation extent, run-up and water depths, of a 1755-like event on the region of Huelva, located on the Spanish southwestern coast, one of the regions that was affected in the past by several high energy events, as proved by historical documents and sedimentological data. Modelling was made with a slightly modified version of the COMCOT (Cornell Multi-grid Coupled Tsunami Model) code. Sensitivity tests were performed for a single source in order to understand the relevance and influence of the source parameters in the inundation extent and the fundamental impact parameters. We show that a 1755-like event will have a dramatic impact in a large area close to Huelva inundating an area between 82 and 92 km2 and reaching maximum run-up around 5 m. In this sense our results show that small variations on the characteristics of the tsunami source are not too significant for the impact assessment. We show that the maximum flow depth and the maximum run-up increase with the average slip on the source, while the strike of the fault is not a critical factor as Huelva is significantly far away from the potential sources identified up to now. We also show that the maximum flow depth within the inundated area is very dependent on the tidal level, while maximum run-up is less affected, as a consequence of the complex morphology of the area.


2013 ◽  
Vol 569-570 ◽  
pp. 254-261
Author(s):  
Consuelo M. Gómez-Soberón ◽  
Bertha Olmos-Navarrete ◽  
Manuel Jara-Díaz ◽  
José Manuel Jara-Guerrero

Bridges are considered as vital components that require a high degree of protection to guarantee their functionality, even after significant earthquakes. So, the damage evaluation of current conditions of these structures is considered a necessary tool for inspection, maintenance and rehabilitation. Seismic fragility curves of a common highway bridge structure, with simple-supported girders, for different seismic scenarios, are evaluated in this paper. The selected bridge is a RC system with rectangular piers, forming a frame substructure; the bridge piers reinforcement is designed using steel jackets. Damage fragility curves are again evaluated for the reinforced system and compared with the initial condition; for that, a non-linear analyses with Ruaumoko program are accomplished, using a Takeda constitutive model and the damage index proposed by Parket al. As an external seismic action, artificial accelerograms are obtained based on signals registered in the most hazardous earthquake zone of Mexico. The probability changes of a certain damage level are verified for the obtained results.


2008 ◽  
Vol 02 (02) ◽  
pp. 133-155 ◽  
Author(s):  
J. J. WIJETUNGE ◽  
XIAOMING WANG ◽  
PHILIP L.-F. LIU

The 2004 Indian Ocean tsunami caused enormous loss of lives and damage to property in Sri Lanka and in several other countries bordering the Indian Ocean. One way of mitigating potential loss of lives from a similar event in the future is through early warning and quick evacuation of vulnerable coastal communities to safer areas, and such evacuation planning is usually carried out based on inundation maps. Accordingly, the present paper outlines the numerical modelling carried out to develop tsunami inundation maps on a grid of 10 m resolution for three cities on the south coast of Sri Lanka. The results give the tsunami arrival time contours and the spatial distribution of the extent of inundation, the maximum flow velocities as well as the hydrodynamic force in these three cities due to an event similar to the 2004 tsunami.


Sign in / Sign up

Export Citation Format

Share Document