Public policy towards catastrophe

Author(s):  
Richard A. Posner

The Indian Ocean tsunami of December 2004 focused attention on a type of disaster to which policymakers pay too little attention – a disaster that has a very low or unknown probability of occurring, but that if it does occur creates enormous losses. The flooding of New Orleans in the late summer of 2005 was a comparable event, although the probability of the event was known to be high; the Corps of Engineers estimated its annual probability as 0.33% (Schleifstein and McQuaid, 2002), which implies a cumulative probability of almost 10% over a thirty-year span. The particular significance of the New Orleans flood for catastrophic-risk analysis lies in showing that an event can inflict enormous loss even if the death toll is small – approximately 1/250 of the death toll from the tsunami. Great as that toll was, together with the physical and emotional suffering of survivors, and property damage, even greater losses could be inflicted by other disasters of low (but not negligible) or unknown probability. The asteroid that exploded above Siberia in 1908 with the force of a hydrogen bomb might have killed millions of people had it exploded above a major city. Yet that asteroid was only about 200 feet in diameter, and a much larger one (among the thousands of dangerously large asteroids in orbits that intersect the earth’s orbit) could strike the earth and cause the total extinction of the human race through a combination of shock waves, fire, tsunamis, and blockage of sunlight, wherever it struck. Another catastrophic risk is that of abrupt global warming, discussed later in this chapter. Oddly, with the exception of global warming (and hence the New Orleans flood, to which global warming may have contributed, along with manmade destruction of wetlands and barrier islands that formerly provided some protection for New Orleans against hurricane winds), none of the catastrophes mentioned above, including the tsunami, is generally considered an ‘environmental’ catastrophe. This is odd, since, for example, abrupt catastrophic global change would be a likely consequence of a major asteroid strike.

2011 ◽  
Vol 11 (10) ◽  
pp. 2835-2846 ◽  
Author(s):  
N. Valencia ◽  
A. Gardi ◽  
A. Gauraz ◽  
F. Leone ◽  
R. Guillande

Abstract. In the framework of the European SCenarios for tsunami Hazard-induced Emergencies MAnagement (SCHEMA) project (www.schemaproject.org), we empirically developed new tsunami damage functions to be used for quantifying the potential tsunami damage to buildings along European-Mediterranean coasts. Since no sufficient post-tsunami observations exist in the Mediterranean areas, we based our work on data collected by several authors in Banda Aceh (Indonesia) after the 2004 Indian Ocean tsunami. Obviously, special attention has been paid in focusing on Indonesian buildings which present similarities (in structure, construction material, number of storeys) with the building typologies typical of the European-Mediterranean areas. An important part of the work consisted in analyzing, merging, and interpolating the post-disaster observations published by three independent teams in order to obtain the spatial distribution of flow depths necessary to link the flow-depth hazard parameter to the damage level observed on buildings. Then we developed fragility curves (showing the cumulative probability to have, for each flow depth, a damage level equal-to or greater-than a given threshold) and damage curves (giving the expected damage level) for different classes of buildings. It appears that damage curves based on the weighted mean damage level and the maximum flow depth are the most appropriate for producing, under GIS, expected damage maps for different tsunami scenarios.


Author(s):  
Bo-Joung Park ◽  
Seung-Ki Min ◽  
Evan Weller

Abstract Summer season has lengthened substantially across Northern Hemisphere (NH) land over the past decades, which has been attributed to anthropogenic greenhouse gas increases. This study examines additional future changes in summer season onset and withdrawal under 1.5℃ and 2.0℃ global warming conditions using multiple atmospheric global climate model (AGCM) large-ensemble simulations from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project. Five AGCMs provide more than 100 runs of 10-year length for three experiments: All-Hist (current decade: 2006-2015), Plus15, and Plus20 (1.5℃ and 2.0℃ above pre-industrial condition, respectively). Results show that with 1.5℃ and 2.0℃ warmer conditions summer season will become longer by a few days to weeks over entire NH lands, with slightly larger contributions by delay in withdrawal due to stronger warming in late summer. Stronger changes are observed more in middle latitudes than high latitudes and largest expansion (up to three weeks) is found over East Asia and the Mediterranean. Associated changes in summer-like day frequency is further analyzed focusing on the extended summer edges. The hot days occur more frequently in lower latitudes including East Asia, USA and Mediterranean, in accord with largest summer season lengthening. Further, difference between Plus15 and Plus20 indicates that summer season lengthening and associated increases in hot days can be reduced significantly if warming is limited to 1.5℃. Overall, similar results are obtained from CMIP5 coupled GCM simulations (based on RCP8.5 scenario experiments), suggesting a weak influence of air-sea coupling on summer season timing changes.


The Condor ◽  
2007 ◽  
Vol 109 (2) ◽  
pp. 334-350
Author(s):  
Walter D. Koenig ◽  
Justyn T. Stahl

Abstract Acorn Woodpeckers (Melanerpes formicivorus) at Hastings Reservation in central coastal California exhibit a bimodal peak in annual breeding activity. One peak occurs in spring during which the majority of breeding takes place, while a second is centered in late August as the new acorn crop matures. These latter nests are mostly initiated in late summer but often do not fledge until at least late September and are thus referred to here as ‘fall’ nests. Fall nests occur in about one-third of all years, taking place when the acorn crop is large and summer temperatures are relatively high. Fledglings from fall nests constitute 4.3% of the population's total productivity and survive and recruit to the population at levels comparable to spring fledglings. Fall nesting is less likely in groups in which either the male or female breeding adults have undergone a change from the prior year, but groups are otherwise indistinguishable. Ecologically, fall nesting is closely tied to the acorn crop and thus to breeding success in the following, rather than the prior, spring. Among North American terrestrial birds in general, fall breeding has been reported in 16% of all species and is significantly more common among residents and colonially nesting species, in which the frequency exceeds 25%. Furthermore, fall nesting is likely to have been underreported in the literature. Thus, this phenomenon is at least an irregular part of the breeding biology of a substantial fraction of North American birds and should be considered a possibility in population studies of temperate-zone species. This is especially true given that fall nesting is likely to increase as global warming takes place.


2014 ◽  
Vol 14 (11) ◽  
pp. 3105-3122 ◽  
Author(s):  
N. Horspool ◽  
I. Pranantyo ◽  
J. Griffin ◽  
H. Latief ◽  
D. H. Natawidjaja ◽  
...  

Abstract. Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence-based decision-making regarding risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean tsunami, but this has been largely concentrated on the Sunda Arc with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent probabilistic tsunami hazard assessment (PTHA) for Indonesia. This assessment produces time-independent forecasts of tsunami hazards at the coast using data from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500–2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting the larger maximum magnitudes. The annual probability of experiencing a tsunami with a height of > 0.5 m at the coast is greater than 10% for Sumatra, Java, the Sunda islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of > 3.0 m, which would cause significant inundation and fatalities, is 1–10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1–1% for north Sulawesi, Seram and Flores. The results of this national-scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.


2014 ◽  
Vol 11 (21) ◽  
pp. 6029-6046 ◽  
Author(s):  
H. Sahling ◽  
M. Römer ◽  
T. Pape ◽  
B. Bergès ◽  
C. dos Santos Fereirra ◽  
...  

Abstract. We mapped, sampled, and quantified gas emissions at the continental margin west of Svalbard during R/V Heincke cruise He-387 in late summer 2012. Hydroacoustic mapping revealed that gas emissions were not limited to a zone just above 396 m water depth. Flares from this depth have gained significant attention in the scientific community in recent years because they may be caused by bottom-water warming-induced hydrate dissolution in the course of global warming and/or by recurring seasonal hydrate formation and decay. We found that gas emissions occurred widespread between about 80 and 415 m water depth, which indicates that hydrate dissolution might only be one of several triggers for active hydrocarbon seepage in that area. Gas emissions were remarkably intensive at the main ridge of the Forlandet moraine complex in 80 to 90 m water depths, and may be related to thawing permafrost. Focused seafloor investigations were performed with the remotely operated vehicle (ROV) "Cherokee". Geochemical analyses of gas bubbles sampled at about 240 m water depth as well as at the 396 m gas emission sites revealed that the vent gas is primarily composed of methane (> 99.70%) of microbial origin (average δ13C = −55.7‰ V-PDB). Estimates of the regional gas bubble flux from the seafloor to the water column in the area of possible hydrate decomposition were achieved by combining flare mapping using multibeam and single-beam echosounder data, bubble stream mapping using a ROV-mounted horizontally looking sonar, and quantification of individual bubble streams using ROV imagery and bubble counting. We estimated that about 53 × 106 mol methane were annually emitted at the two areas and allow for a large range of uncertainty due to our method (9 to 118 × 106 mol yr−1). First, these amounts show that gas emissions at the continental margin west of Svalbard were on the same order of magnitude as bubble emissions at other geological settings; second, they may be used to calibrate models predicting hydrate dissolution at present and in the future; and third, they may serve as a baseline (year 2012) estimate of the bubble flux that will potentially increase in the future due to ever-increasing global-warming-induced bottom water warming and hydrate dissociation.


Author(s):  
Ridwan Siddique ◽  
Alfonso Mejia ◽  
Naoki Mizukami ◽  
Richard Palmer

Regional climate change impacts show wide range of variations under different levels of global warming. Watersheds in the northeastern region of United States (NEUS) are projected to undergo most severe impacts from climate change in the forms of extreme precipitation events, floods and drought, sea level rise etc. As such, there is high possibility that hydrologic regimes in the NEUS may get altered in the future which can be absolutely devastating for managing water resources and ecological balance across different watersheds. In this study, therefore, we present a comprehensive impact analysis using different hydrologic indicators across selected watersheds in the NEUS under different thresholds of global temperature increases (1.5C, 2.0C and 3.0C). Precipitation and temperature projections from fourteen downscaled GCMs under RCP8.5 greenhouse gas concentration pathway are used as inputs into a distributed hydrological model to obtain future streamflow conditions. Overall, the results indicate that majority of the selected watersheds will enter into a wetter regime particularly during the months of winter while flow conditions during late summer and fall indicate a dry future under all three thresholds of temperature increases. The estimation of time of emergence of new hydrological regimes show large uncertainties under 1.5C and 2.0C global temperature increases, however, most of the GCM projections show strong consensus that new hydrological regimes may appear in the NEUS watersheds under 3.0C temperature increase.


2017 ◽  
Author(s):  
Jie Chen ◽  
Yujie Liu ◽  
Tao Pan ◽  
Yanhua Liu ◽  
Fubao Sun ◽  
...  

Abstract. The Paris Agreement proposes a 1.5 °C target to limit the increase in global mean temperature (GMT). Studying the population exposure to droughts under this 1.5 °C target will be helpful in guiding new policies that mitigate and adapt to disaster risks under climate change. Based on simulations from the inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), the standardized precipitation evapotranspiration index (SPEI) was used to calculate drought frequencies in the reference period and 1.5 °C global warming scenario. Then population exposure was evaluated by combining drought frequency with simulated population data from shared socioeconomic pathways (SSPs). In addition, the relative importance of climate and demographic change and the cumulative probability of exposure change were analyzed. Results revealed that population exposure to droughts on the east side of the Hu line is much more than on the west side; exposure in the middle and lower reaches of the Yangtze River region is the highest and lowest in the Qinghai-Tibet region. An additional 6.97 million people will be exposed to droughts under the 1.5 °C global warming scenario relative to the reference period. Demographic change is the primary contributor to exposure (79.95 %) in the 1.5 °C global warming scenario, more than climate change (29.93 %) or the interaction effect (−9.88 %). Of the three drought intensities, mild, moderate, and extreme, moderate droughts contribute the most to exposure (63.59 %). The frequency of extreme droughts is likely to decrease (71.83 % probability), while mild and moderate droughts may increase slightly (55.17 % and 51.71 % probability, respectively) in the 1.5 °C global warming scenario.


2013 ◽  
Vol 1 (2) ◽  
pp. 471-508
Author(s):  
C. Y. Wu ◽  
S. C. Chen

Abstract. Landslide spatial probability, temporal probability, and landslide size probability were employed to perform landslide hazard assessment in this study. Following a screening process, landslide susceptibility-related factors included eleven intrinsic geomorphological factors and two extrinsic rainfall factors, which were evaluated as effective factors because of the higher correlation with the landslide distribution. Landslide area analysis was first employed to establish the power law relationship between landslide area and noncumulative number, and a probability density function was then used to convert this relationship to cumulative probability of landslide area. The exceedance probability of rainfall with different recurrence intervals was used to determine the temporal probability of those events. Finally, the landslide spatial probability, landslide area probability, and exceedance probability were integrated to estimate the annual probability of each slope-unit with a landslide area exceeding a certain threshold in a watershed. The slope-units with high landslide probability were concentrated in Taigang River watershed, which should be the leading target of future management efforts.


2008 ◽  
Vol 14 ◽  
pp. 287-294 ◽  
Author(s):  
M. H. Glantz

Abstract. By American standards, New Orleans is a very old, very popular city in the southern part of the United States. It is located in Louisiana at the mouth of the Mississippi River, a river which drains about 40% of the Continental United States, making New Orleans a major port city. It is also located in an area of major oil reserves onshore, as well as offshore, in the Gulf of Mexico. Most people know New Orleans as a tourist hotspot; especially well-known is the Mardi Gras season at the beginning of Lent. People refer to the city as the "Big Easy". A recent biography of the city refers to it as the place where the emergence of modern tourism began. A multicultural city with a heavy French influence, it was part of the Louisiana Purchase from France in early 1803, when the United States bought it, doubling the size of the United States at that time. Today, in the year 2007, New Orleans is now known for the devastating impacts it withstood during the onslaught of Hurricane Katrina in late August 2005. Eighty percent of the city was submerged under flood waters. Almost two years have passed, and many individuals and government agencies are still coping with the hurricane's consequences. And insurance companies have been withdrawing their coverage for the region. The 2005 hurricane season set a record, in the sense that there were 28 named storms that calendar year. For the first time in hurricane forecast history, hurricane forecasters had to resort to the use of Greek letters to name tropical storms in the Atlantic and Gulf (Fig.~1). Hurricane Katrina was a Category 5 hurricane when it was in the middle of the Gulf of Mexico, after having passed across southern Florida. At landfall, Katrina's winds decreased in speed and it was relabeled as a Category 4. It devolved into a Category 3 hurricane as it passed inland when it did most of its damage. Large expanses of the city were inundated, many parts under water on the order of 20 feet or so. The Ninth Ward, heavily populated by African Americans, was the site of major destruction, along with several locations along the Gulf coasts of the states of Mississippi and Alabama, as well as other parts of Louisiana coastal areas (Brinkley, 2006). The number of deaths officially attributed to Hurricane Katrina was on the order of 1800 to 2000 people. The cost of the hurricane in terms of physical damage has been estimated at about US $250 billion, the costliest natural disaster in American history. It far surpassed the cost of Hurricane Andrew in 1992, the impacts of which were estimated to be about $20 billion. It also surpassed the drought in the US Midwest in 1988, which was estimated to have cost the country $40 billion, but no lives were lost. Some people have referred to Katrina as a "superstorm". It was truly a superstorm in terms of the damage it caused and the havoc it caused long after the hurricane's winds and rains had subsided. The effects of Katrina are sure to be remembered for generations to come, as were the societal and environmental impacts of the severe droughts and Dust Bowl days of the 1930s in the US Great Plains. It is highly likely that the metropolitan area of New Orleans which people had come to know in the last half of the 20th century will no longer exist, and a new city will likely replace it (one with a different culture). Given the likelihood of sea level rise on the order of tens of centimeters associated with the human-induced global warming of the atmosphere, many people wonder whether New Orleans will be able to survive throughout the 21st century without being plagued by several more tropical storms (Gill, 2005). Some (e.g., Speaker of the US House of Representatives Hastert) have even questioned whether the city should be restored in light of the potential impacts of global warming and the city's geographic vulnerability to tropical storms.


1973 ◽  
Vol 6 (02) ◽  
pp. 192-203
Author(s):  
James H. Chubbuck ◽  
Edward F. Renwick

Huey Long once described himself assui generis. In the galaxy of American cities: New Orleans fits the same description. There is no other place like it — from the mania and madness of Bourbon Street on Mardi Gras, to the unbelievably hot, humid afternoons of late summer dozing on a bene in Jackson Square or watching the sails move in and out of the Lake Ponchartrain haze.New Orleans is a city for the senses. The sight of a worn-out streetcar still clanking along under the oak trees of St. Charles Avenue. The smell of beer and whiskey and urine being washed down in the French Quarter by the 5 a.m. street cleaner. The moaning sound of a clarinet as it reaches out for “Just a Closer Walk With Thee.” And the taste of some of the best restaurant cooking in the country.New Orleans also is a citypar excellenceof politics and politicians. Its political intrigues and range of personalities challenge the imagination. Louisiana has been described as the “westernmost of Arab States,” with New Orleans as its capitol. The zest and intensity with which the game of politics is played even overwhelms the natives from time to time.


Sign in / Sign up

Export Citation Format

Share Document