scholarly journals Risk estimation for future glacier lake outburst floods based on local land-use changes

2014 ◽  
Vol 14 (6) ◽  
pp. 1611-1624 ◽  
Author(s):  
S. Nussbaumer ◽  
Y. Schaub ◽  
C. Huggel ◽  
A. Walz

Abstract. Effects of climate change are particularly strong in high-mountain regions. Most visibly, glaciers are shrinking at a rapid pace, and as a consequence, glacier lakes are forming or growing. At the same time the stability of mountain slopes is reduced by glacier retreat, permafrost thaw and other factors, resulting in an increasing landslide hazard which can potentially impact lakes and therewith trigger far-reaching and devastating outburst floods. To manage risks from existing or future lakes, strategies need to be developed to plan in time for adequate risk reduction measures at a local level. However, methods to assess risks from future lake outbursts are not available and need to be developed to evaluate both future hazard and future damage potential. Here a method is presented to estimate future risks related to glacier lake outbursts for a local site in southern Switzerland (Naters, Valais). To generate two hazard scenarios, glacier shrinkage and lake formation modelling was applied, combined with simple flood modelling and field work. Furthermore, a land-use model was developed to quantify and allocate land-use changes based on local-to-regional storylines and three scenarios of land-use driving forces. Results are conceptualized in a matrix of three land-use and two hazard scenarios for the year 2045, and show the distribution of risk in the community of Naters, including high and very high risk areas. The study underlines the importance of combined risk management strategies focusing on land-use planning, on vulnerability reduction, as well as on structural measures (where necessary) to effectively reduce future risks related to lake outburst floods.

2013 ◽  
Vol 1 (4) ◽  
pp. 4349-4387
Author(s):  
S. Nussbaumer ◽  
C. Huggel ◽  
Y. Schaub ◽  
A. Walz

Abstract. Effects of climate change are particularly strong in high-mountain regions. Most visibly, glaciers are shrinking at a rapid pace, and as a consequence, glacier lakes are forming or growing. At the same time the stability of mountain slopes is reduced by glacier retreat, permafrost thaw and other factors, resulting in an increasing risk of landslides which can potentially impact lakes and therewith trigger far reaching and devastating outburst floods. To manage risks from existing or future lakes, strategies need to be developed to plan in time for adequate risk reduction measures at a local level. However, methods to assess risks from future lake outbursts are not available. It is actually a challenge to develop methods to evaluate both, future hazard potential and future damage potential. Here we present an analysis of future risks related to glacier lake outbursts for a local site in southern Switzerland (Naters, Valais). To estimate two hazard scenarios, we used glacier shrinkage and lake formation modelling, simple flood modelling and field work. Further we developed a land-use model to quantify and allocate land-use changes based on local-to-regional storylines and three scenarios of land-use driving forces. Results are conceptualized in a matrix of three land-use and two hazard scenarios for a time period of 2045, and show the distribution of risk in the community of Naters, including high and very high risk areas. The study corroborates the importance of land-use planning to effectively reduce future risks related to lake outburst floods.


2020 ◽  
Vol 46 (1) ◽  
pp. 223-249 ◽  
Author(s):  
M. Correas-Gonzalez ◽  
S.M. Moreiras ◽  
V. Jomelli ◽  
G. Arnaud-Fassetta

High mountain regions are extremely sensitive to current climate change affecting natural processes and related hazards (i.e. glacier retreat, slope instability, formation and enlargement of proglacial lakes). Ice-Dammed Lake Outburst Floods (IDLOFs) are highlighted among these phenomena and reach a greater socio-economic impact due to their highly destructive power. Facing on forecasting of more frequency and intensity of dangerous events, risk analysis of communities exposed is required. The purpose of this research was to assess the hazard, vulnerability, and risk against IDLOF in the Plomo and Mendoza valleys in current scenarios. We analyze historical IDLOF events occurred in the Plomo River that was dammed at least three times by surges of the Grande del Nevado del Plomo glacier (GNP) generating six outburst floods in the 1788 - 2018 period. Almost one century after the most catastrophic event in 1934, many changes in land usage and occupation along the Mendoza valley have occurred, exposing new vulnerable elements to natural hazards in this area. Our findings show a greater risk mainly due to higher vulnerability as a consequence of higher habitat exposition associated with increasing tourist activity and land-use changes. This fact exposes an urgent necessity of land-use planning in Andean regions.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhihong Yao ◽  
Bo Wang ◽  
Jie Huang ◽  
Yu Zhang ◽  
Jianchen Yang ◽  
...  

Based on the support of RS and GIS technology, this paper analyzes the spatial and temporal variation characteristics and driving forces of land use in the Yanhe River Basin through the processing and interpretation of remote sensing images in different periods from 1980 to 2015 and the methods of the land use transfer matrix and dynamic attitude. The results show that cropland, grassland, and forest land are the three types of land use with the most obvious changes, while urban land and water body have relatively small changes in the Yanhe River Basin. The transfer between cropland, forest land, and grassland and urban land is very obvious, among which the conversion rate of cropland is the highest. During the 15 years from 2000 to 2015, the land use types of the Yanhe River Basin changed by 13.17%, with an average annual growth rate of 0.88%. The implementation of ecological restoration and governance policy is the direct driving force of land use change in the Yanhe River Basin. The results obtained in this study can provide reference basis for land use planning and management and land use structure optimization in the Yanhe River Basin in the future.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 627
Author(s):  
Duong H. Nong ◽  
An T. Ngo ◽  
Hoa P. T. Nguyen ◽  
Thuy T. Nguyen ◽  
Lan T. Nguyen ◽  
...  

We analyzed the agricultural land-use changes in the coastal areas of Tien Hai district, Thai Binh province, in 2005, 2010, 2015, and 2020, using Landsat 5 and Landsat 8 data. We used the object-oriented classification method with the maximum likelihood algorithm to classify six types of land uses. The series of land-use maps we produced had an overall accuracy of more than 80%. We then conducted a spatial analysis of the 5-year land-use change using ArcGIS software. In addition, we surveyed 150 farm households using a structured questionnaire regarding the impacts of climate change on agricultural productivity and land uses, as well as farmers’ adaptation and responses. The results showed that from 2005 to 2020, cropland decreased, while aquaculture land and forest land increased. We observed that the most remarkable decreases were in the area of rice (485.58 ha), the area of perennial crops (109.7 ha), and the area of non-agricultural land (747.35 ha). The area of land used for aquaculture and forest increased by 566.88 ha and 772.60 ha, respectively. We found that the manifestations of climate change, such as extreme weather events, saltwater intrusion, drought, and floods, have had a profound impact on agricultural production and land uses in the district, especially for annual crops and aquaculture. The results provide useful information for state authorities to design land-management strategies and solutions that are economic and effective in adapting to climate change.


1977 ◽  
Vol 4 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Gerald G. Garland ◽  
J. Pelham Chisholm ◽  
Colin R. Christian

Changes in land-use can have an important effect on rates of erosion and denudation. In order to avoid accelerating erosion rates, decision makers in land-use planning require adequate information on the contemporary geomorphological processes and hydrology of areas where modifications in the land-use pattern are envisaged. The first phase in the acquisition of the information is the reconnaissance survey, which shows where and how the erosional status of an area is likely to be affected, and also acts as a foundation on which to base more detailed work in the future.The Solitude area is an active erosional system, dominated by mass movement and fluvial processes. The rate of removal of material is likely to be increased by modifications in land-use which, from other points of view, would be considered entirely suitable for the area. Therefore, if accelerated denudation is to be avoided, projects involving land-use changes should be implemented only by those having an adequate understanding of the mechanism of geomorphological processes operating in the area.


Hydrology ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 17 ◽  
Author(s):  
Sekela Twisa ◽  
Shija Kazumba ◽  
Mathew Kurian ◽  
Manfred F. Buchroithner

Understanding the variation in the hydrological response of a basin associated with land use changes is essential for developing management strategies for water resources. The impact of hydrological changes caused by expected land use changes may be severe for the Wami river system, given its role as a crucial area for water, providing food and livelihoods. The objective of this study is to examine the influence of land use changes on various elements of the hydrological processes of the basin. Hybrid classification, which includes unsupervised and supervised classification techniques, is used to process the images (2000 and 2016), while CA–Markov chain analysis is used to forecast and simulate the 2032 land use state. In the current study, a combined approach—including a Soil and Water Assessment Tool (SWAT) model and Partial Least Squares Regression (PLSR)—is used to explore the influences of individual land use classes on fluctuations in the hydrological components. From the study, it is evident that land use has changed across the basin since 2000 (which is expected to continue in 2032), as well as that the hydrological effects caused by land use changes were observed. It has been found that the major land use changes that affected hydrology components in the basin were expansion of cultivation land, built-up area and grassland, and decline in natural forests and woodland during the study period. These findings provide baseline information for decision-makers and stakeholders concerning land and water resources for better planning and management decisions in the basin resources’ use.


2012 ◽  
Vol 23 ◽  
pp. 120-132 ◽  
Author(s):  
Lluís Parcerisas ◽  
Joan Marull ◽  
Joan Pino ◽  
Enric Tello ◽  
Francesc Coll ◽  
...  

Polar Record ◽  
1998 ◽  
Vol 34 (188) ◽  
pp. 31-38 ◽  
Author(s):  
Frank Duerden ◽  
Richard G. Kuhn

AbstractThere is strong contemporary interest in the application of traditional environmental knowledge (TEK) of physical environments and land-use patterns in northern Canada. This interest relates to land claims, land-use planning, cultural preservation, resource management, and environmental monitoring. The application of TEK to land and resource management is critically examined and a typology relating scale, user group, and the transformation of knowledge is developed. Of the many challenges facing the incorporation of TEK in resource-management initiatives, perhaps the greatest is the recognition of the appropriateness of scale. The conclusions reached in this paper reaffirm the notion that scale and context are key components in maintaining the validity and integrity of TEK. The primary role of TEK appears to be with providing the most valid and intelligible interpretations of local geographies and prescribing locally appropriate resource-management strategies.


Author(s):  
I Gusti Agung Lanang Widyantara ◽  
I Nyoman Merit ◽  
I Wayan Sandi Adnyana

Damage to forest resources has caused the environmental balance of watersheds (DAS) becomes damaged. It often causes the result of high levels of erosion. One of the land use changes that are currently happening is in Yeh Empas watershed. With this research can be known the proposed land use and appropriate land use planning on Yeh Empas watershed. Erosion prediction using the USLE (Universal Soil Loss Equation) method is to estimate how much the rate of erosion is happening and also to get an idea how good land management actions for the region. The proposed land use determination is using the scoring method by combining the slope factor of the field, the soil sensitivity of erosion, and the intensity of daily rainfall. Soil sampling was done by taking soil samples from a total of 11 samples of soil from the land unit. This research conducted to estimate the rate of erosion, to determines how much erosion can be tolerated in Yeh Empas watershed, and its relationship with the factors that influence it, as well as to determine the proposed of land use. The results of erosion prediction on each unit of land in the research area ranged from 1.75 to 1,254.96 tons/ha/year and has a grade level of erosion from slight to very severe. The result of tolerated erosion ranged from 15.06 to 24.32 tons/ha/year. The value of erosion prediction that exceeded from tolerated erosion value occurs on land units 7, 8, and 9. On that land units required proposed of land use and soil conservation techniques so that the value of erosion prediction could be below from tolerated erosion value. The analysis results of the proposed land use in Yeh Empas watershed, for areas inside the forest is proposed to protected forest (land units 1, 2, 3, 4, 5, and 6) and the management is by planting plants that are adapted to the contour lines of slope. In the areas outside the forest is proposed for annual crop cultivation area (land units 7, 8, and 9)the management with the farming plantation development, high density growing crops and terracing and also for crops cultivation area (land units 10 and 11) management by mulching, cover soil with high density and terracing.


The Holocene ◽  
2016 ◽  
Vol 27 (5) ◽  
pp. 694-711 ◽  
Author(s):  
Daniel Fredh ◽  
Florence Mazier ◽  
Petra Bragée ◽  
Per Lagerås ◽  
Mats Rundgren ◽  
...  

The relationship between land-use and floristic diversity in the landscape, for the last millennia, is analysed from two small lakes in southern Sweden. Pollen analysis and the Local Vegetation Estimates (LOVE) model are used to quantify land-cover at local scales with 100-year time windows. Floristic richness is estimated using palynological richness, and we introduce LOVE-based evenness as a proxy for floristic evenness on a local scale based on the LOVE output. The results reveal a dynamic land-use pattern, with agricultural expansion during the 13th century, a partly abandoned landscape around AD 1400, re-establishment during the 15th–17th centuries and a transition from traditional to modern land-use during the 20th century. We suggest that the more heterogeneous landscape and the more dynamic land-use during the 13th–19th centuries were of substantial importance for achieving the high floristic diversity that characterises the traditional landscape. Pollen-based studies of this type are helpful in identifying landscape characteristics and land-use practices that are important for floristic diversity and may therefore guide the development of ecosystem management strategies aiming at mitigating the on-going loss of species seen in the landscape of southern Sweden and many other regions worldwide.


Sign in / Sign up

Export Citation Format

Share Document