scholarly journals Evaluating and Predicting the Effects of Land Use Changes on Hydrology in Wami River Basin, Tanzania

Hydrology ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 17 ◽  
Author(s):  
Sekela Twisa ◽  
Shija Kazumba ◽  
Mathew Kurian ◽  
Manfred F. Buchroithner

Understanding the variation in the hydrological response of a basin associated with land use changes is essential for developing management strategies for water resources. The impact of hydrological changes caused by expected land use changes may be severe for the Wami river system, given its role as a crucial area for water, providing food and livelihoods. The objective of this study is to examine the influence of land use changes on various elements of the hydrological processes of the basin. Hybrid classification, which includes unsupervised and supervised classification techniques, is used to process the images (2000 and 2016), while CA–Markov chain analysis is used to forecast and simulate the 2032 land use state. In the current study, a combined approach—including a Soil and Water Assessment Tool (SWAT) model and Partial Least Squares Regression (PLSR)—is used to explore the influences of individual land use classes on fluctuations in the hydrological components. From the study, it is evident that land use has changed across the basin since 2000 (which is expected to continue in 2032), as well as that the hydrological effects caused by land use changes were observed. It has been found that the major land use changes that affected hydrology components in the basin were expansion of cultivation land, built-up area and grassland, and decline in natural forests and woodland during the study period. These findings provide baseline information for decision-makers and stakeholders concerning land and water resources for better planning and management decisions in the basin resources’ use.

Author(s):  
J. Y. G. Dos Santos ◽  
R. M. Da Silva ◽  
J. G. Carvalho Neto ◽  
S. M. G. L. Montenegro ◽  
C. A. G. Santos ◽  
...  

Abstract. This study aims to assess the impact of the land-use changes between the periods 1967−1974 and 1997−2008 on the streamflow of Tapacurá catchment (northeastern Brazil) using the Soil and Water Assessment Tool (SWAT) model. The results show that the most sensitive parameters were the baseflow, Manning factor, time of concentration and soil evaporation compensation factor, which affect the catchment hydrology. The model calibration and validation were performed on a monthly basis, and the streamflow simulation showed a good level of accuracy for both periods. The obtained R2 and Nash-Sutcliffe Efficiency values for each period were respectively 0.82 and 0.81 for 1967−1974, and 0.93 and 0.92 for the period 1997−2008. The evaluation of the SWAT model response to the land cover has shown that the mean monthly flow, during the rainy seasons for 1967−1974, decreased when compared to 1997−2008.


2017 ◽  
Vol 4 (1) ◽  
pp. 97 ◽  
Author(s):  
Roland Alexander Barkey ◽  
Muh Faisal Mappiasse ◽  
Munajat Nursaputra

Ambon City is the center of national activities in Maluku province, established under Presidential Decree 77 issued in 2014 about spatial planning of Maluku Islands. Ambon is a strategic region in terms of development in agriculture and fisheries sectors. Development of the region caused this area to be extremely vulnerable to the issues on water security. Seven watersheds which are Air Manis, Hutumury, Passo, Tulehu, Wae Batu Merah, Wae Lela and Wae Sikula affect the water system in Ambon City. Therefore, this study was conducted to determine the impact of climate and land use change on water availability in seven watersheds in Ambon City. The analysis was performed using a Soil and Water Assessment Tool (SWAT) Model in order to analyze climate changes on the period of 1987-1996 (past), of 2004-2013 (present) and climate projection on the period 2035s (future) and equally to analyze land use data in 1996 and 2014. The results of the research indicated that land use in the study area has changed since 1996 to 2014. Forest area decreased around 32.45%, while residential areas and agriculture land increased 56.01% and 19.80%, respectively. The results of SWAT model presented the water availability amount to 1127.01 million m3/year on the period of 1987-1996. During the period of 2004-2013, it has been reduced to 1,076.55 million m3/year (around 4.48% decrease). The results of the prediction of future water availability in the period of 2035s estimated a decrease of water availability around 4.69% (1,026.09 million m3/year). Land use and climate change have greatly contributed to the water availability in seven watersheds of Ambon City. Ambon City is in need of land use planning especially the application of spatial plan. The maintenance of forest area is indispensable. In built-up areas, it is essential to implement green space and water harvesting in order to secure water availability in the future.


Author(s):  
N. Hari ◽  
A. Mani ◽  
H. V. Hema Kumar ◽  
V. Srinivasa Rao ◽  
L. Edukondalu

The present study was conducted to investigate the impact of land use cover change on water resources availability in Gundlakamma Subbasin. The Gundlakamma subbasin is predominantly agricultural based and Gundlakamma is a seasonal river. Hence, a study has been conducted to simulate the availability of water resources in the subbasin using SWAT (Soil and Water Assessment Tool) model. The database was generated like DEM, soil map and land use/cover using the secondary data and field survey. The SWAT model was calibrated three years (2010-2012) and validated with four years (2013-2016) with the observed discharges from reservoir outflow. The values of NSE and R2 was found as 0.79 and 0.87 during calibration, 0.65 and 0.72, respectively during validation. The modelled values showed reasonably good agreement with the observed values of reservoir outflow, both during calibration and validation periods. The reservoir outflow in the subbasin was quantified under the change land use conditions.


2019 ◽  
Vol 11 (4) ◽  
pp. 1695-1711 ◽  
Author(s):  
Mohammadreza Hajihosseini ◽  
Hamidreza Hajihosseini ◽  
Saeed Morid ◽  
Majid Delavar ◽  
Martijn J. Booij

Abstract Many river basins are facing a reduction of flows which might be attributed to changes in climate and human activities. This issue is very important in transboundary river basins, where already existing conflicts about shared water resources between riparian countries can easily escalate. The decrease of streamflow in the transboundary Hirmand (Helmand) River is one of the main challenges for water resources management in Iran and Afghanistan. This research aims to quantify the causes of this problem which has a direct impact on the dryness of the Hamoun wetlands being an international Ramsar site. To achieve this, the land use changes in the Middle Helmand Basin (MHB) in Afghanistan were evaluated for three time periods between 1990 and 2011 using remote sensing data and the Soil and Water Assessment Tool (SWAT) Model for understanding watershed response to environmental changes. It was concluded that the total irrigated area in the region has increased from 103,000 ha in 1990 to 122,000 ha in 2001 and 167,000 ha in 2011 (62% increase). According to the results, the average annual discharge when adapting the land use during the simulations was 4,787 million cubic meters (MCM)/year and while employing the land use of 1990 from the beginning of the simulations, the average annual discharge was 5,133 MCM/year. Therefore, the agricultural developments in the Helmand basin decreased the discharge with about 346 MCM/year accompanying an increase of 64,000 ha in an irrigated area in MHB after 1990. Notably, the impact of land use change increases significantly for more recent periods and causes a reduction of 810 MCM in annual streamflow for the MHB. The amount of water depletion (i.e. actual evapotranspiration) per hectare has increased from 5,690 in 1985 to 7,320 m3 in 2012. The applied methodology of this study is useful to cope with such a data scarcity region. It can help quantify the impact of land use change on the region and formulates strategies that can improve the situation between Iran and Afghanistan.


Author(s):  
Daming Li ◽  
Shilong Bu ◽  
Shuo Chen ◽  
Qicheng Li ◽  
Yanqing Li

Abstract Land Use/Land Cover (LULC) is the main factor that affects the hydrological process of catchment. A better understanding of its influence is of great significance to future land use planning and water resources management. Since 2011, the local government has implemented the land remediation plan, and the LULC has undergone major changes in the Yanghe Reservoir Basin. This paper used The Soil and Water Assessment Tool (SWAT) model to study the Blue Water (BW) and Green Water (GW) resources in three typical years (wet year, dry year, and normal year) under the two LULC scenarios in 2010 and 2017 of the basin. The results showed that from 2010 to 2017, the area of cultivated land and residential construction land increased by 227.28% and 269.23%, respectively; the area of unused land, woodland, and grassland decreased by 98.84%, 35.90% and 39.52%, respectively. Compared with the results of the 2010 LULC scenario, the average BW of the three typical years under the 2017 LULC scenario decreased by 11.66%, 52.32%, and 21.95%, respectively, and the average GW flow increased by 6.72%, 2.90%, and 6.83%, respectively, and the average GW reserves decreased by 14.80%, 11.39%, and 7.67%, respectively. Therefore, this study believed that changes of LULC have led to a significant decrease in runoff and an increase in evapotranspiration in the basin.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jianwei Liu ◽  
Can Zhang ◽  
Limin Kou ◽  
Qiang Zhou

The changes of both climate and land use/cover have some impacts on water resources. In the Taoer River basin, these changes have directly influenced the land use pattern adjustment, wetland protection, connections between rivers and reservoirs, local social and economic development, and so forth. Therefore, studying the impacts of climate and land use/cover changes is of great practical significance. The Soil and Water Assessment Tool (SWAT) model is employed in this study. With historical measured runoff data and remote sensing maps of annual land use classifications, we analyzed the impacts of climate change on the runoff of the Taoer River. Based on the land use/cover classifications of 1990, 2000, and 2010, we analyzed the land use/cover change over the last 30 years and the contribution coefficient of farmland, woodland, grassland, and other major land use types to the runoff. This study can provide a reference for the rational allocation of water resources and the adjustment of land use structure for decision makers.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3282
Author(s):  
Ji He ◽  
Yu-Rong Wan ◽  
Hai-Tao Chen ◽  
Wen-Chuan Wang

To reveal the influence process of land use changes on runoff variation trends, this paper takes the Luojiang River of China as the study area, and the Soil and Water Assessment Tool (SWAT) model was constructed to quantitatively analyze the impact of different land uses on runoff formation in the watershed, and used the Cellular Automata-Markov (CA-Markov) model to predict future land use scenarios and runoff change trends. The results show that: (1) the SWAT model can simulate the runoff in the Luojiang River basin; (2) the runoff in the Luojiang River basin has a decreasing trend in recent 10 years, caused by the decrease of rainfall and runoff due to changes in land use; (3) the forecast shows that the land-use changes in the basin will lead to an increase in runoff coefficient in 2025. The increase of the runoff coefficient will bring some adverse effects, and relevant measures should be taken to increase the water storage capacity of urban areas. This study can help plan future management strategies for the study area land coverage and put forward a preventive plan for the possible adverse situation of runoff variation.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Éverton Blainski ◽  
Eileen Andrea Acosta Porras ◽  
Luis Hamilton Pospissil Garbossa ◽  
Adilson Pinheiro

ABSTRACT Changes in the Earth’s landscape have been the focus of much environmental research. In this context, hydrological models stand out as tools for several assessments. This study aimed to use the Soil and Water Assessment Tool (SWAT) hydrological model to simulate the impact of changes in land use in the Camboriú River Watershed in the years 1957, 1978, and 2012. The results indicated that the SWAT model was efficient in simulating water flow and sediment transport processes. Thus, it was possible to evaluate the impact of different land use scenarios on water and sediment yield in the catchment. The changes in land use caused significant changes in the hydro-sedimentological dynamic. Regarding flow, the effects of land use changes were more pronounced at both ends of the curve representing duration of flow. The worst scenario was identified for the year 2012, which saw the highest peak discharges during flood events and lowest flows during the dry season. Concerning soil erosion, the highest values were identified for sub-basins that were predominantly covered by rice paddies and pastures; this was attributed mainly to surface runoff and changes in land use (represented by C-USLE). Overall, the Camboriú River Basin did not experience severe soil erosion issues; however, it was found that changes in land use related to soil and climate characteristics may increase soil degradation, especially in years with high precipitation levels.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


2019 ◽  
Vol 35 (5) ◽  
pp. 723-731 ◽  
Author(s):  
Gurdeep Singh ◽  
Dharmendra Saraswat ◽  
Naresh Pai ◽  
Benjamin Hancock

Abstract. Standard practice of setting up Soil and Water Assessment Tool (SWAT) involves use of a single land use (LU) layer under the assumption that no change takes place in LU condition irrespective of the length of simulation period. This assumption leads to erroneous conclusions about efficacy of management practices in those watersheds where land use changes (LUCs) (e.g. agriculture to urban, forest to agriculture etc.) occur during the simulation period. To overcome this limitation, we have developed a user-friendly, web-based tool named LUU Checker that helps create a composite LU layer by integrating multiple years of LU layers available in watersheds of interest. The results show that the use of composite LU layer for hydrologic response unit (HRU) delineation in 2474-km2 L’Anguile River Watershed in Arkansas was able to capture changed LU at subbasin level by using LU data available in the year 1999 and 2006, respectively. The web-based tool is applicable for large size watersheds and is accessible to multiple users from anywhere in the world. Keywords: Land use, Web-based tool, SWAT, LUU Checker.


Sign in / Sign up

Export Citation Format

Share Document