scholarly journals AEGIS: a wildfire prevention and management information system

2016 ◽  
Vol 16 (3) ◽  
pp. 643-661 ◽  
Author(s):  
Kostas Kalabokidis ◽  
Alan Ager ◽  
Mark Finney ◽  
Nikos Athanasis ◽  
Palaiologos Palaiologou ◽  
...  

Abstract. We describe a Web-GIS wildfire prevention and management platform (AEGIS) developed as an integrated and easy-to-use decision support tool to manage wildland fire hazards in Greece (http://aegis.aegean.gr). The AEGIS platform assists with early fire warning, fire planning, fire control and coordination of firefighting forces by providing online access to information that is essential for wildfire management. The system uses a number of spatial and non-spatial data sources to support key system functionalities. Land use/land cover maps were produced by combining field inventory data with high-resolution multispectral satellite images (RapidEye). These data support wildfire simulation tools that allow the users to examine potential fire behavior and hazard with the Minimum Travel Time fire spread algorithm. End-users provide a minimum number of inputs such as fire duration, ignition point and weather information to conduct a fire simulation. AEGIS offers three types of simulations, i.e., single-fire propagation, point-scale calculation of potential fire behavior, and burn probability analysis, similar to the FlamMap fire behavior modeling software. Artificial neural networks (ANNs) were utilized for wildfire ignition risk assessment based on various parameters, training methods, activation functions, pre-processing methods and network structures. The combination of ANNs and expected burned area maps are used to generate integrated output map of fire hazard prediction. The system also incorporates weather information obtained from remote automatic weather stations and weather forecast maps. The system and associated computation algorithms leverage parallel processing techniques (i.e., High Performance Computing and Cloud Computing) that ensure computational power required for real-time application. All AEGIS functionalities are accessible to authorized end-users through a web-based graphical user interface. An innovative smartphone application, AEGIS App, also provides mobile access to the web-based version of the system.

2015 ◽  
Vol 3 (10) ◽  
pp. 6185-6228 ◽  
Author(s):  
K. Kalabokidis ◽  
A. Ager ◽  
M. Finney ◽  
N. Athanasis ◽  
P. Palaiologou ◽  
...  

Abstract. A Web-GIS wildfire prevention and management platform (AEGIS) was developed as an integrated and easy-to-use decision support tool (http://aegis.aegean.gr). The AEGIS platform assists with early fire warning, fire planning, fire control and coordination of firefighting forces by providing access to information that is essential for wildfire management. Databases were created with spatial and non-spatial data to support key system functionalities. Updated land use/land cover maps were produced by combining field inventory data with high resolution multispectral satellite images (RapidEye) to be used as inputs in fire propagation modeling with the Minimum Travel Time algorithm. End users provide a minimum number of inputs such as fire duration, ignition point and weather information to conduct a fire simulation. AEGIS offers three types of simulations; i.e. single-fire propagations, conditional burn probabilities and at the landscape-level, similar to the FlamMap fire behavior modeling software. Artificial neural networks (ANN) were utilized for wildfire ignition risk assessment based on various parameters, training methods, activation functions, pre-processing methods and network structures. The combination of ANNs and expected burned area maps produced an integrated output map for fire danger prediction. The system also incorporates weather measurements from remote automatic weather stations and weather forecast maps. The structure of the algorithms relies on parallel processing techniques (i.e. High Performance Computing and Cloud Computing) that ensure computational power and speed. All AEGIS functionalities are accessible to authorized end users through a web-based graphical user interface. An innovative mobile application, AEGIS App, acts as a complementary tool to the web-based version of the system.


Fire ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 26
Author(s):  
Casey Teske ◽  
Melanie K. Vanderhoof ◽  
Todd J. Hawbaker ◽  
Joe Noble ◽  
John Kevin Hiers

Development of comprehensive spatially explicit fire occurrence data remains one of the most critical needs for fire managers globally, and especially for conservation across the southeastern United States. Not only are many endangered species and ecosystems in that region reliant on frequent fire, but fire risk analysis, prescribed fire planning, and fire behavior modeling are sensitive to fire history due to the long growing season and high vegetation productivity. Spatial data that map burned areas over time provide critical information for evaluating management successes. However, existing fire data have undocumented shortcomings that limit their use when detailing the effectiveness of fire management at state and regional scales. Here, we assessed information in existing fire datasets for Florida and the Landsat Burned Area products based on input from the fire management community. We considered the potential of different datasets to track the spatial extents of fires and derive fire history metrics (e.g., time since last burn, fire frequency, and seasonality). We found that burned areas generated by applying a 90% threshold to the Landsat burn probability product matched patterns recorded and observed by fire managers at three pilot areas. We then created fire history metrics for the entire state from the modified Landsat Burned Area product. Finally, to show their potential application for conservation management, we compared fire history metrics across ownerships for natural pinelands, where prescribed fire is frequently applied. Implications of this effort include increased awareness around conservation and fire management planning efforts and an extension of derivative products regionally or globally.


2021 ◽  
Author(s):  
Emmanuel Da Ponte ◽  
Fermin Alcasena ◽  
Tejas Bhagwat ◽  
Zhongyang Hu

<p>Despite  growing concerns regarding the Amazonian wildfires, the magnitude of the problem is poorly understood. In this study, we assessed the wildfire activity in the  protected natural sites (n= 428) of Bolivia, Brazil, Colombia, Ecuador, French Guyana, Guyana, Peru, Suriname, and Venezuela, encompassing an area of 1.4 million km<sup>2 </sup>of the Amazon basin. A 250 m resolution spectroradiometer sensor imaging (MODIS) was used to obtain land-use/land-cover (MODIS land use land cover product) changes and derive the wildfire activity data (ignition locations and burned areas (MODIS active fire products)) from 2001 to 2018. First, we characterized the mean fire return interval, wildfire occurrence, and empiric burn probability. Then, we implemented a transmission analysis to assess the burned area from incoming fires. We used transmission analysis to characterize the land use and anthropic activities associated to fire ignition locations across the different countries. On average, 867 km <sup>2</sup> of natural forests were burned in protected natural sites annually, and about 85 incoming fires per year from neighboring areas accounted for 10.5% (9,128 ha) of the burned area. The most affected countries were Brazil (53%), Bolivia (24%), and Venezuela (16%).Considerable amount of fire ignition points were detected in open savannas (29%) and grasslands (41%) , where the fire is periodically used to clear extensive grazing properties. The incoming fires from savannas were responsible for burning the largest forest areas within protected sites, affecting as much as 9,800 ha in a single fire event. In conclusion, we  discuss the potential implications of the main socioeconomic factors and environmental policies that could explain increasing trends of burned areas. Wildfire risk mitigation strategies include the fire ignition prevention in developed areas, fire use regulation in rural communities, increased fuels management efforts in the buffer areas surrounding natural sites, and the early detection system that may facilitate a rapid and effective fire control response. Our analysis and quantitative outcomes describing the fire activity represent a sound science-based approach for an well defined wildfire management within the protected areas of the Amazonian basin.</p>


Thorax ◽  
2017 ◽  
Vol 73 (3) ◽  
pp. 231-239 ◽  
Author(s):  
Matthias Griese ◽  
Elias Seidl ◽  
Meike Hengst ◽  
Simone Reu ◽  
Hans Rock ◽  
...  

BackgroundChildren’s interstitial lung diseases (chILD) cover many rare entities, frequently not diagnosed or studied in detail. There is a great need for specialised advice and for internationally agreed subclassification of entities collected in a register.Our objective was to implement an international management platform with independent multidisciplinary review of cases at presentation for long-term follow-up and to test if this would allow for more accurate diagnosis. Also, quality and reproducibility of a diagnostic subclassification system were assessed using a collection of 25 complex chILD cases.MethodsA web-based chILD management platform with a registry and biobank was successfully designed and implemented.ResultsOver a 3-year period, 575 patients were included for observation spanning a wide spectrum of chILD. In 346 patients, multidisciplinary reviews were completed by teams at five international sites (Munich 51%, London 12%, Hannover 31%, Ankara 1% and Paris 5%). In 13%, the diagnosis reached by the referring team was not confirmed by peer review. Among these, the diagnosis initially given was wrong (27%), imprecise (50%) or significant information was added (23%).The ability of nine expert clinicians to subcategorise the final diagnosis into the chILD-EU register classification had an overall exact inter-rater agreement of 59% on first assessment and after training, 64%. Only 10% of the ‘wrong’ answers resulted in allocation to an incorrect category. Subcategorisation proved useful but training is needed for optimal implementation.ConclusionsWe have shown that chILD-EU has generated a platform to help the clinical assessment of chILD.Trial registration numberResults, NCT02852928.


2018 ◽  
Vol 8 (11) ◽  
pp. 2278 ◽  
Author(s):  
Martin Schvarcbacher ◽  
Katarína Hrabovská ◽  
Bruno Rossi ◽  
Tomáš Pitner

The Smart Grid (SG) is nowadays an essential part of modern society, providing two-way energy flow and smart services between providers and customers. The main drawback is the SG complexity, with an SG composed of multiple layers, with devices and components that have to communicate, integrate, and cooperate as a unified system. Such complexity brings challenges for ensuring proper reliability, resilience, availability, integration, and security of the overall infrastructure. In this paper, we introduce a new smart grid testing management platform (herein called SGTMP) for executing real-time hardware-in-the-loop SG tests and experiments that can simplify the testing process in the context of interconnected SG devices. We discuss the context of usage, the system architecture, the interactive web-based interface, the provided API, and the integration with co-simulations frameworks to provide virtualized environments for testing. Furthermore, we present one main scenario about the stress-testing of SG devices that can showcase the applicability of the platform.


FLORESTA ◽  
2002 ◽  
Vol 32 (2) ◽  
Author(s):  
Ronaldo Viana Soares ◽  
Juliana Ferreira Santos

O conhecimento do perfil dos incêndios florestais é muito importante para o planejamento do controle dos mesmos. O objetivo deste trabalho foi estabelecer o perfil dos incêndios florestais no país através de dados coletados, em áreas protegidas, no período de 1994 a 1997, através de formulários preenchidos por empresas e instituições florestais. Foram registrados e informados 1.957 incêndios e apesar deste número não representar a totalidade dos incêndios ocorridos no período estudado, constituiu-se numa base confiável para se conhecer as principais características dos incêndios. Os resultados mostraram que a área média atingida por incêndio no período analisado foi de aproximadamente 135 ha, sendo Minas Gerais o estado líder, tanto em número de incêndios informados (62,7% do total) como em área queimada (25,2%). O grupo Incendiários foi a principal causa dos incêndios, com 56,6% das ocorrências, vindo a seguir as Queimas para limpeza com 22,1%. Com relação à área queimada o grupo Queimas para limpeza , com 74,1% da superfície atingida, foi a principal causa, ficando o grupo Incendiários em segundo lugar com 19,8%. A principal estação de incêndios no país se estende de julho a novembro, quando ocorreram 79,2% dos incêndios, correspondendo a 98,6% da área atingida. O maior número de incêndios (39,7% das ocorrências) foi registrado em Outro tipo de vegetação, que inclui cerrado, capoeira e campo. Com relação à área atingida, entretanto, 92,5% foi registrada em Florestas Nativas. Quanto à distribuição dos incêndios através das classes de tamanho, 23,9% foi enquadrado na classe I ( 0,1 ha). É importante ressaltar que quanto maior a eficiência no combate aos incêndios, maior é a concentração dos mesmos na classe I. Apesar de corresponder a apenas 2,4% das ocorrências, os incêndios da classe V ( 200,0 ha) foram responsáveis por 94,5% da área queimada. FOREST FIRE STATISTICS IN BRAZIL FROM 1994 TO 1997 Abstract Forest fire statistics knowledge is an important tool for fire control planning. The objective of this research was to collect information on forest fire occurrence in Brazilian protected areas in the period of 1994 to 1997. The analyzed variables were the number of fires and burned areas per state of the federation, monthly distribution, probable causes, affected vegetation, size class distribution, and average burned area per fire. Results showed that the average burned area per fire was approximately 135 ha and Minas Gerais ranked first, both in number of registered fires (62.7%) and burned surface (25.2%). Incendiary, with 56.6% of the occurrences was the leading cause, followed by debris burning with 22.1%. However, as for the affected area, Debris burning was the leading cause (74.1%), followed by Incendiary (19.8%). The fire season extends from July to November, when 79.2% of the fires occurred, corresponding to 98.6% of the burned surface. Miscellaneous, that includes savanna, secondary growth forest, and grassland were the most affected vegetation type (39.7% of the occurrences). In relation to the burned surface, Native Forest (92.5%) ranked first. The distribution of the registered fires through the size classes presented 23.9% of the occurrences in Class I ( 0.1 ha), whereas 94.5% of the burned area were result of Class V ( 200 ha) fires. Size Class II (0.1 to 4.0 ha), with 49.1% of the occurrences, ranked first in number of registered fires during the analyzed period.


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1054 ◽  
Author(s):  
Rodrigo Balaguer-Romano ◽  
Rubén Díaz-Sierra ◽  
Javier Madrigal ◽  
Jordi Voltas ◽  
Víctor Resco de Dios

Research Highlights: Pre-programmed cell death in old Aleppo pine needles leads to low moisture contents in the forest canopy in July, the time when fire activity nears its peak in the Western Mediterranean Basin. Here, we show, for the first time, that such needle senescence may increase fire behavior and thus is a potential mechanism explaining why the bulk of the annual burned area in the region occurs in early summer. Background and Objectives: The brunt of the fire season in the Western Mediterranean Basin occurs at the beginning of July, when live fuel moisture content is near its maximum. Here, we test whether a potential explanation to this conundrum lies in Aleppo pine needle senescence, a result of pre-programmed cell death in 3-years-old needles, which typically occurs in the weeks preceding the peak in the burned area. Our objective was to simulate the effects of needle senescence on fire behavior. Materials and Methods: We simulated the effects of needle senescence on canopy moisture and structure. Fire behavior was simulated across different phenological scenarios and for two highly contrasting Aleppo pine stand structures, a forest, and a shrubland. Wildfire behavior simulations were done with BehavePlus6 across a wide range of wind speeds and of dead fine surface fuel moistures. Results: The transition from surface to passive crown fire occurred at lower wind speeds under simulated needle senescence in the forest and in the shrubland. Transitions to active crown fire only occurred in the shrubland under needle senescence. Maximum fire intensity and severity were always recorded in the needle senescence scenario. Conclusions: Aleppo pine needle senescence may enhance the probability of crown fire development at the onset of the fire season, and it could partly explain the concentration of fire activity in early July in the Western Mediterranean Basin.


2020 ◽  
Author(s):  
Emily G Lattie ◽  
Michael Bass ◽  
Sofia F Garcia ◽  
Siobhan M Phillips ◽  
Patricia I Moreno ◽  
...  

BACKGROUND Unmanaged cancer symptoms and treatment-related side effects can compromise long-term clinical outcomes and health-related quality of life. Health information technologies such as web-based platforms offer the possibility to supplement existing care and optimize symptom management. OBJECTIVE This paper describes the development and usability of a web-based symptom management platform for cancer patients and survivors that will be implemented within a large health system. METHODS A web-based symptom management platform was designed and evaluated via one-on-one usability testing sessions. The System Usability Scale (SUS), After Scenario Questionnaire (ASQ), and qualitative analysis of semistructured interviews were used to assess program usability. RESULTS Ten cancer survivors and five cancer center staff members participated in usability testing sessions. The mean score on the SUS was 86.6 (SD 14.0), indicating above average usability. The mean score on the ASQ was 2.5 (SD 2.1), indicating relatively high satisfaction with the usability of the program. Qualitative analyses identified valued features of the program and recommendations for further improvements. CONCLUSIONS Cancer survivors and oncology care providers reported high levels of acceptability and usability in the initial development of a web-based symptom management platform for cancer survivors. Future work will test the effectiveness of this web-based platform.


Author(s):  
Nina Manzke ◽  
Martin Kada ◽  
Thomas Kastler ◽  
Shaojuan Xu ◽  
Norbert de Lange ◽  
...  

Urban sprawl and the related landscape fragmentation is a Europe-wide challenge in the context of sustainable urban planning. The URBan land recycling Information services for Sustainable cities (URBIS) project aims for the development, implementation, and validation of web-based information services for urban vacant land in European functional urban areas in order to provide end-users with site specific characteristics and to facilitate the identification and evaluation of potential development areas. The URBIS services are developed based on open geospatial data. In particular, the Copernicus Urban Atlas thematic layers serve as the main data source for an initial inventory of sites. In combination with remotely sensed data like SPOT5 images and ancillary datasets like OpenStreetMap, detailed site specific information is extracted. Services are defined for three main categories: i) baseline services, which comprise an initial inventory and typology of urban land, ii) update services, which provide a regular inventory update as well as an analysis of urban land use dynamics and changes, and iii) thematic services, which deliver specific information tailored to end-users' needs.


2021 ◽  
Author(s):  
Gayl Humphrey ◽  
Joanna Chu ◽  
Rebecca Ruwhui-Collins ◽  
Stephanie Erick ◽  
Nicki Dowling ◽  
...  

BACKGROUND Many people experiencing harms and problems from gambling do not seek treatment from gambling treatment services due to numerous personal and resource barriers. Mobile health (mHealth) interventions are widely used across a diverse range of health care areas and by various population groups, but there are few in the gambling harm field, despite their potential as an additional modality for the delivery of treatment. OBJECTIVE This study aims to understand the needs, preferences and priorities of people experiencing gambling harms or problems who are potential end-users of a cognitive behavioural therapy (CBT) mHealth intervention (based on the GAMBLINGLESS web-based intervention) to inform design features and functions. METHODS Drawing on a mixed-methods approach, we used the creators and domain experts to review the GAMBLINGLESS web-based online program and convert it into a prototype for a mobile phone-based intervention. Each module was reviewed against the original evidence-base to ensure that the changes maintained the fidelity and conceptual integrity intended and to ensure that there were no gaps. Early wireframes, design ideas (look, feel and function) and content examples were to be developed using multi-modalities, to help initiate discussions and ideas with end-users. Using an iterative co-creation process with a Young Adult, a Māori and a Pasifika Peoples group, all with experiences of problem or harmful gambling, we undertook six focus groups; two cycles per group. During each focus group, participants identified preferences, features, and functions for inclusion in a final design of the mHealth intervention and its content. RESULTS Over three months, the GAMBLINGLESS web-based intervention was reviewed and remapped from four modules to six. This revised program is based on the principles underpinning the Transtheoretical Model, in which it is recognised that some end-users will be more ready to change than others, change is a process than unfolds over time, a non-linear progression is common, and that different intervention options may be required by end-users across the stages of change. Two cycles of focus groups were then conducted, with a total of 30 unique participants (13 Māori, 9 Pasifika and 8 Young Adults) at the first sessions and 18 participants (7 Māori, 6 Pasifika and 5 Young Adults) at the second sessions. Using prototype examples that demonstrably reflected the focus group discussions and ideas, the features, functions and designs for the Manaaki app were finalised. Aspects such as personalisation, cultural relevance, and being positively framed were key attributes identified. Congruence of the final app attributes with the conceptual frameworks of the original program was also confirmed. CONCLUSIONS Those who experience gambling harms may not seek help from current treatment providers and as such, finding new modalities to provided treatment and support are needed. mHealth has the potential to deliver interventions direct to the end-user. Weaving underpinning theory and existing evidence of effective treatment with end-user input into the design and development of the mHealth intervention does not guarantee success. However, it does provide a foundation for framing the mechanism, context and content of the intervention and arguably provides a greater chance of demonstrating effectiveness.


Sign in / Sign up

Export Citation Format

Share Document