scholarly journals The impact of drought on the productivity of two rainfed crops in Spain

2019 ◽  
Vol 19 (6) ◽  
pp. 1215-1234 ◽  
Author(s):  
Marina Peña-Gallardo ◽  
Sergio Martín Vicente-Serrano ◽  
Fernando Domínguez-Castro ◽  
Santiago Beguería

Abstract. Drought events are of great importance in most Mediterranean climate regions because of the diverse and costly impacts they have in various economic sectors and on the environment. The effects of this natural hazard on rainfed crops are particularly evident. In this study the impacts of drought on two representative rainfed crops in Spain (wheat and barley) were assessed. As the agriculture sector is vulnerable to climate, it is especially important to identify the most appropriate tools for monitoring the impact of the weather on crops, and particularly the impact of drought. Drought indices are the most effective tool for that purpose. Various drought indices have been used to assess the influence of drought on crop yields in Spain, including the Standardized Precipitation Evapotranspiration Index (SPEI), the Standardized Precipitation Index (SPI), the Palmer drought indices (Palmer Drought Severity Index, PDSI; Palmer Z Index, Z Index; Palmer Hydrological Drought Index, PHDI; Palmer Modified Drought Index, PMDI), and the Standardized Palmer Drought Index (SPDI). Two sets of crop yield data at different spatial scales and temporal periods were used in the analysis. The results showed that drought indices calculated at different timescales (SPI, SPEI) most closely correlated with crop yield. The results also suggested that different patterns of yield response to drought occurred depending on the region, period of the year, and the drought timescale. The differing responses across the country were related to season and the magnitude of various climate variables.

2019 ◽  
Author(s):  
Marina Peña-Gallardo ◽  
Sergio Martín Vicente-Serrano ◽  
Fernando Domínguez-Castro ◽  
Santiago Beguería

Abstract. Drought events are of great importance in most Mediterranean climate regions because of the diverse and costly impacts they have in various economic sectors and on the environment. The effects of this natural hazard on rainfed crops are particularly evident. In this study the impacts of drought on two representative rainfed crops in Spain (wheat and barley) were assessed. As the agriculture sector is vulnerable to climate, it is especially important to identify the most appropriate tools for monitoring the impact of the weather on crops, and particularly the impact of drought. Drought indices are the most effective tool for that purpose. Various drought indices have been used to assess the influence of drought on crop yields in Spain, including the standardized precipitation and evapotranspiration index (SPEI), the standardized precipitation index (SPI), the Palmer drought indices (PDSI, Z-Index, PHDI, PMDI), and the standardized Palmer drought index (SPDI). Two sets of crop yield data at different spatial scales and temporal periods were used in the analysis. The results showed that drought indices calculated at different time scales (SPI, SPEI) most closely correlated with crop yield. The results also suggested that different patterns of yield response to drought occurred depending on the region, period of the year, and the drought time scale. The differing responses across the country were related to season and the magnitude of various climate variables.


2021 ◽  
Author(s):  
Tianliang Jiang ◽  
Xiaoling Su

<p>Although the concept of ecological drought was first defined by the Science for Nature and People Partnership (SNAPP) in 2016, there remains no widely accepted drought index for monitoring ecological drought. Therefore, this study constructed a new ecological drought monitoring index, the standardized ecological water deficit index (SEWDI). The SEWDI is based on the difference between ecological water requirements and consumption, referred to as the standardized precipitation index (SPI) method, which was used to monitor ecological drought in Northwestern China (NWRC). The performances of the SEWDI and four widely-used drought indices [standardized root soil moisture index (SSI), self-calibrated Palmer drought index (scPDSI), standardized precipitation-evaporation drought index (SPEI), and SPI) in monitoring ecological drought were evaluated through comparing the Pearson correlations between these indices and the standardized normalized difference vegetation index (SNDVI) under different time scales, wetness, and water use efficiencies (WUEs) of vegetation. Finally, the rotational empirical orthogonal function (REOF) was used to decompose the SEWDI at a 12-month scale in the NWRC during 1982–2015 to obtain five ecological drought regions. The characteristics of ecological drought in the NWRC, including intensity, duration, and frequency, were extracted using run theory. The results showed that the performance of the SEWDI in monitoring ecological drought was highest among the commonly-used drought indices evaluated under different time scales [average correlation coefficient values (r) between SNDVI and drought indices: SEWDI<sub></sub>= 0.34, SSI<sub></sub>= 0.24, scPDSI<sub></sub>= 0.23, SPI<sub></sub>= 0.20, SPEI<sub></sub>= 0.18), and the 12-month-scale SEWDI was largely unaffected by wetness and WUE. In addition, the results of the monitoring indicated that serious ecological droughts in the NWRC mainly occurred in 1982–1986, 1990–1996, and 2005–2010, primarily in regions I, II, and V, regions II, and IV, and in region III, IV, and V, respectively. This study provides a robust approach for quantifying ecological drought severity across natural vegetation areas and scientific evidence for governmental decision makers.</p>


2019 ◽  
Vol 43 (5) ◽  
pp. 627-642 ◽  
Author(s):  
Luis Eduardo Quesada-Hernández ◽  
Oscar David Calvo-Solano ◽  
Hugo G Hidalgo ◽  
Paula M Pérez-Briceño ◽  
Eric J Alfaro

The Central American Dry Corridor (CADC) is a sub-region in the isthmus that is relatively drier than the rest of the territory. Traditional delineations of the CADC’s boundaries start at the Pacific coast of southern Mexico, stretching south through Central America’s Pacific coast down to northwestern Costa Rica (Guanacaste province). Using drought indices (Standardized Precipitation Index, Modified Rainfall Anomaly Index, Palmer Drought Severity Index, Palmer Hydrological Drought Index, Palmer Drought Z-Index and the Reconnaissance Drought Index) along with a definition of aridity as the ratio of potential evapotranspiration (representing demand of water from the atmosphere) over precipitation (representing the supply of water), we proposed a CADC delineation that changes for normal, dry and wet years. The identification of areas that change their classification during extremely dry conditions is important because these areas may indicate the location of future expansion of aridity associated with climate change. In the same way, the delineation of the CADC during wet extremes allows the identification of locations that remain part of the CADC even during the wettest years and that may require special attention from the authorities.


2020 ◽  
Vol 11 (S1) ◽  
pp. 1-17 ◽  
Author(s):  
Muhammad Imran Khan ◽  
Xingye Zhu ◽  
Muhammad Arshad ◽  
Muhammad Zaman ◽  
Yasir Niaz ◽  
...  

Abstract Drought indices that compute drought events by their statistical properties are essential stratagems for the estimation of the impact of drought events on a region. This research presents a quantitative investigation of drought events by analyzing drought characteristics, considering agro-meteorological aspects in the Heilongjiang Province of China during 1980 to 2015. To examine these aspects, the Standardized Soil Moisture Index (SSI), Standardized Precipitation Index (SPI), and Multivariate Standardized Drought Index (MSDI) were used to evaluate the drought characteristics. The results showed that almost half of the extreme and exceptional drought events occurred during 1990–92 and 2004–05. The spatiotemporal analysis of drought characteristics assisted in the estimation of the annual drought frequency (ADF, 1.20–2.70), long-term mean drought duration (MDD, 5–11 months), mean drought severity (MDS, −0.9 to −2.9), and mild conditions of mean drought intensity (MDI, −0.2 to −0.80) over the study area. The results obtained by MSDI reveal the drought onset and termination based on the combination of SPI and SSI, with onset being dominated by SPI and drought persistence being more similar to SSI behavior. The results of this study provide valuable information and can prove to be a reference framework to guide agricultural production in the region.


2019 ◽  
Vol 11 (23) ◽  
pp. 2742 ◽  
Author(s):  
Tran ◽  
Tran ◽  
Myint ◽  
Latorre-Carmona ◽  
Ho ◽  
...  

Drought is a major natural disaster that creates a negative impact on socio-economic development and environment. Drought indices are typically applied to characterize drought events in a meaningful way. This study aims at examining variations in agricultural drought severity based on the relationship between standardized ratio of actual and potential evapotranspiration (ET and PET), enhanced vegetation index (EVI), and land surface temperature (LST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) platform. A new drought index, called the enhanced drought severity index (EDSI), was developed by applying spatiotemporal regression methods and time-series biophysical data derived from remote sensing. In addition, time-series trend analysis in the 2001–2018 period, along with the Mann–Kendal (MK) significance test and the Theil Sen (TS) slope, were used to examine the spatiotemporal dynamics of environmental parameters (i.e., LST, EVI, ET, and PET), and geographically weighted regression (GWR) was subsequently applied in order to analyze the local correlations among them. Results showed that a significant correlation was discovered among LST, EVI, ET, and PET, as well as their standardized ratios (|r| > 0.8, p < 0.01). Additionally, a high performance of the new developed drought index, showing a strong correlation between EDSI and meteorological drought indices (i.e., standardized precipitation index (SPI) or the reconnaissance drought index (RDI)), measured at meteorological stations, giving r > 0.7 and a statistical significance p < 0.01. Besides, it was found that the temporal tendency of this phenomenon was the increase in intensity of drought, and that coastal areas in the study area were more vulnerable to this phenomenon. This study demonstrates the effectiveness of EDSI and the potential application of integrating spatial regression and time-series data for assessing regional drought conditions.


2021 ◽  
Author(s):  
Oualid HAKAM ◽  
◽  
Abdennasser BAALI ◽  
Touria EL KAMEL ◽  
Ahouach Youssra ◽  
...  

Due to the lack of studies on drought in the Lower Sebou basin (LSB), the complexity of drought event and the difference in climate conditions. The identification of the most appropriate drought indices (DIs) to assess drought conditions has become a priority. Therefore, assessing the performance of different drought indices was considered in order to identify the universal drought indices that are well adapted to the LSB. Based on data availability, five DIs were used: Standardized Precipitation Index (SPI), Standardized Precipitation and Evapotranspiration Index (SPEI), Reconnaissance Drought Index (RDI), self-calibrated Palmer Drought Severity Index (sc-PDSI) and Streamflow Drought Index (SDI). The DIs were calculated on an annual scale using monthly time series of precipitation, temperature and river flow from 1984-2016. Thornthwaite's method was used to calculate potential evapotranspiration (PET). Pearson's correlation (r) were analyzed. Furthermore, five decision criteria namely robustness, traceability, transparency, sophistication and scalability were used to evaluate the performance of these indices. The results proved the fact that SPI is suitable to detect the drought duration and intensity compared to other indices with high correlation coefficients especially in sub humid regions, knowing that it tends to give more results that are humid in stations with semi-arid climates. SPI, SPEI and RDI follow the same trend during the period studied. However, sc-PDSI appears to be the most sensitive to temperature and precipitation by overestimating the drought conditions. Eventually, the results of the performance evaluation criteria revealed that SPEI classified first (total score = 137) among other meteorological drought indices, followed by SPI, RDI and sc-PDSI.


Author(s):  
A. Dare ◽  
E. J. Zakka ◽  
Maikano Samson ◽  
A. O. Afolabi ◽  
S. O. Okechalu ◽  
...  

Drought is defined as the lack of adequate precipitation, either rain or snow that causes reduced soil moisture or groundwater, diminished streamflow, crop damage and a general water shortage. The objective of this study focuses on meteorological and hydrological drought monitoring in river Kaduna catchment area. Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) drought indices were used to characterize meteorological drought while Streamflow Drought Index (SDI) was used for hydrological drought monitoring for a period of 34 years (1967 – 2001). DrinC software, a drought indices calculator, was used for the calculation of SPI, RDI, and SDI respectively. The drought severity classification based on meteorological and hydrological drought indices gave 33% and 37% drought conditions period with the year 1967 – 2001. Based on these indexes, the drought characteristics of the catchment area were investigated by analyzing meteorological data from 1967 to 2001. The results of this analysis show that more non-drought/normal conditions were predominant than drought conditions. During the period under study (34 years), only one-year return period of extreme drought condition.


2020 ◽  
Author(s):  
Jeongeun Won ◽  
Sangdan Kim

&lt;p&gt;In drought monitoring, it is very important to select climate variables to interpret drought. Most drought monitoring interprets drought as deficit in precipitation, so drought indices focused on the moisture supply side of the atmosphere have been mainly used. However, droughts can be caused not only by lack of rainfall, but also by various climate variables such as increase in temperature. In this regard, interest in potential evapotranspiration(PET), which is an moisture demand side of the atmosphere, is increasing and a PET-based drought index has been developed. However, complex droughts caused by various climate variables cannot be interpreted as a drought index that only considers precipitation or PET. In this study, we suggest a drought monitoring method that can reflect various future climate variables, including precipitation. In other words, copula-based joint drought index(CJDI), which incorporate standardized precipitation index(SPI) based on precipitation and evaporative demand drought index(EDDI) based on PET, is developed. CJDI, which considers both precipitation and PET, which are key variables related to drought, is able to properly monitor the drought events in Korea. In addition, future Drought severity &amp;#8211; duration - frequency curves are derived to project future droughts compared to various drought indices. It is shown that CJDI can be used as a more reasonable drought index to establish the adaptation policy for future droughts by presenting the pattern of future droughts more realistically.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgment: &lt;/strong&gt;This study was funded by the Korea Ministry of Environment (MOE) as Smart Urban Water Resources Management Program. (2019002950004)&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Keywords&lt;/strong&gt;: Climate change; Copula; Drought; CJDI; Drought severity-duration-frequency curve&lt;/p&gt;


2018 ◽  
Vol 10 (8) ◽  
pp. 1231 ◽  
Author(s):  
Khalid. Elhag ◽  
Wanchang Zhang

Currently, the high-resolution satellite images in near real-time have gained more popularity for natural disaster detection due to the unavailability and difficulty of acquiring frequent ground observation data over a wide region. In Sudan, the occurrence of drought events is a predominant natural disaster that causes substantial damages to crop production. Therefore, monitoring drought and measuring its impact on the agricultural sector remain major concerns of policymakers. The current study focused on assessing and analyzing drought characteristics based on two meteorological drought indices, namely the Standardized Precipitation Index (SPI) and the Drought Severity Index (DSI), and inferred the impact of drought on sorghum productivity in Sudan from 2001 to 2011. To identify the wet and dry areas, the deviations of tropical rainfall measuring mission (TRMM) precipitation products from the long-term mean from 2001 to 2011 were computed and mapped at a seasonal scale (July–October). Our findings indicated that the dry condition fluctuated over the whole of Sudan at various temporal and spatial scales. The DSI results showed that both the Kordofan and Darfur regions were affected by drought in the period 2001–2005, whereas most regions were affected by drought from 2008 to 2011. The spatial correlation between DSI, SPI-3, and TRMM precipitation products illustrated a significant positive correlation in agricultural lands and negative correlation in mountainous areas. The relationship between DSI and the Standardized variable of crop yield (St. Y) for sorghum yield was also investigated over two main agricultural regions (Central and Eastern regions) for the period 2001–2011, which revealed a good agreement between them, and a huge drop of sorghum yield also occurred in 2008–2011, corresponding to extreme drought indicated by DSI. The present study indicated that DSI can be used for agricultural drought monitoring and served as an alternative indicator for the estimation of crop yield over Sudan in some levels.


2020 ◽  
Author(s):  
huaiwei sun ◽  
Jianing Chen

&lt;p&gt;As one of the major weather-driven natural disasters, droughts exhibit as the most frequent and widespread natural disasters in China. It is reported that the agriculture losses show continuously grown by following the increasingly severe droughts for the whole country. In order to investigate the impacts of drought on agricultural, we rechecked the functional relationship between the crop yield and climatic variables. Based on the meta-analysis from previous literature, we found a more stable statistical relationship between the yield and the precipitation and evapotranspiration. These results introduce a new drought index, indicated as Crop Water-Related Index for Drought (CWRID), which can be used as a reference index to approximate the drought impact on the loss of yield. Based on the climatic data in China during 1982-2015, several other drought indices (SPI, SPEI, CI, and SEDI) were compared with CWRID to identify the most appropriate agricultural drought index. The data of historical drought damaged area and drought damaged crop yield reduction were used to validate the performances of different indices. The CWRID reasonably predicted the drought damaged area as well as the drought damaged yield reduction during the past 30 years in China. As a contrast, the SEDI is proved to be no suit for quantifying drought. Also, the calculated values are stored in the dataset and can be shared with researchers by request. As a simple index, results indicated that CWRID can be used to quantify the impacts of drought on agricultural as it can reflect the variation of crop yields.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document