Comments to "Development of fragility curves for railway ballast and embankment scour due to overtopping flood flow"

Author(s):  
Anonymous
Author(s):  
Ryota Tsubaki ◽  
Koji Ichii ◽  
Jeremy D. Bricker ◽  
Yoshihisa Kawahara

Abstract. Fragility curves evaluating risk of railway track ballast and embankment fill scour were developed. To develop fragility curves, two well-documented single-track railway washouts during two recent floods in Japan were investigated. Type of damage to the railway was categorized into no damage, ballast scour, and embankment scour, in order of damage severity. Railway overtopping surcharge for each event was estimated via hydrologic and hydraulic analysis. Normal and log-normal fragility curves were developed based on failure probability derived from field records. A combined ballast and embankment scour model was validated by comparing the spatial distribution of railway scour with the field damage record.


2016 ◽  
Vol 16 (12) ◽  
pp. 2455-2472 ◽  
Author(s):  
Ryota Tsubaki ◽  
Jeremy David Bricker ◽  
Koji Ichii ◽  
Yoshihisa Kawahara

Abstract. Fragility curves evaluating a risk of railway embankment fill and track ballast scour were developed. To develop fragility curves, two well-documented events of single-track railway washout during floods in Japan were investigated. Type of damage to the railway was categorized into no damage, ballast scour, and embankment scour, in order of damage severity. Railway overtopping water depth for each event was estimated based on well-documented hydrologic and hydraulic analyses. Normal and log-normal fragility curves were developed based on damage probability derived from field records and the estimated overtopping water depth. A combined ballast and embankment scour model was validated by comparing the results of previous studies and the spatial distribution of railway damage type records.


2020 ◽  
Author(s):  
George Karagiannakis

This paper deals with state of the art risk and resilience calculations for industrial plants. Resilience is a top priority issue on the agenda of societies due to climate change and the all-time demand for human life safety and financial robustness. Industrial plants are highly complex systems containing a considerable number of equipment such as steel storage tanks, pipe rack-piping systems, and other installations. Loss Of Containment (LOC) scenarios triggered by past earthquakes due to failure on critical components were followed by severe repercussions on the community, long recovery times and great economic losses. Hence, facility planners and emergency managers should be aware of possible seismic damages and should have already established recovery plans to maximize the resilience and minimize the losses. Seismic risk assessment is the first step of resilience calculations, as it establishes possible damage scenarios. In order to have an accurate risk analysis, the plant equipment vulnerability must be assessed; this is made feasible either from fragility databases in the literature that refer to customized equipment or through numerical calculations. Two different approaches to fragility assessment will be discussed in this paper: (i) code-based Fragility Curves (FCs); and (ii) fragility curves based on numerical models. A carbon black process plant is used as a case study in order to display the influence of various fragility curve realizations taking their effects on risk and resilience calculations into account. Additionally, a new way of representing the total resilience of industrial installations is proposed. More precisely, all possible scenarios will be endowed with their weighted recovery curves (according to their probability of occurrence) and summed together. The result is a concise graph that can help stakeholders to identify critical plant equipment and make decisions on seismic mitigation strategies for plant safety and efficiency. Finally, possible mitigation strategies, like structural health monitoring and metamaterial-based seismic shields are addressed, in order to show how future developments may enhance plant resilience. The work presented hereafter represents a highly condensed application of the research done during the XP-RESILIENCE project, while more detailed information is available on the project website https://r.unitn.it/en/dicam/xp-resilience.


Sign in / Sign up

Export Citation Format

Share Document