scholarly journals The importance of erosion for debris flow runout modelling from applications to the Swiss Alps

2015 ◽  
Vol 3 (4) ◽  
pp. 2379-2417 ◽  
Author(s):  
F. Frank ◽  
B. W. McArdell ◽  
C. Huggel ◽  
A. Vieli

Abstract. This study describes an investigation of channel-bed erosion of sediment by debris flows. An erosion model, developed using field data from debris flows at the Illgraben catchment, Switzerland, was incorporated into the existing RAMMS debris-flow model, which solves the 2-D shallow-water equations for granular flows. In the erosion model, the relationship between maximum shear stress and measured erosion is used to determine the maximum potential erosion depth. Additionally, the maximum rate of erosion, measured at the same field site, is used to constrain the erosion rate. The model predicts plausible erosion values in comparison with field data from highly erosive debris flow events at the Spreitgraben torrent channel, Switzerland in 2010, without any adjustment to the coefficients in the erosion model. We find that by including channel erosion in runout models a more realistic flow pattern is produced than in simulations where entrainment is not included. In detail, simulations without channel bed erosion show more lateral outflow from the channel where it has not been observed in the field. Therefore the erosion model may be especially useful for practical applications such as hazard analysis and mapping, as well as scientific case studies of erosive debris flows.

2015 ◽  
Vol 15 (11) ◽  
pp. 2569-2583 ◽  
Author(s):  
F. Frank ◽  
B. W. McArdell ◽  
C. Huggel ◽  
A. Vieli

Abstract. This study describes an investigation of channel-bed entrainment of sediment by debris flows. An entrainment model, developed using field data from debris flows at the Illgraben catchment, Switzerland, was incorporated into the existing RAMMS debris-flow model, which solves the 2-D shallow-water equations for granular flows. In the entrainment model, an empirical relationship between maximum shear stress and measured erosion is used to determine the maximum potential erosion depth. Additionally, the average rate of erosion, measured at the same field site, is used to constrain the erosion rate. The model predicts plausible erosion values in comparison with field data from highly erosive debris flow events at the Spreitgraben torrent channel, Switzerland in 2010, without any adjustment to the coefficients in the entrainment model. We find that by including bulking due to entrainment (e.g., by channel erosion) in runout models a more realistic flow pattern is produced than in simulations where entrainment is not included. In detail, simulations without entrainment show more lateral outflow from the channel where it has not been observed in the field. Therefore the entrainment model may be especially useful for practical applications such as hazard analysis and mapping, as well as scientific case studies of erosive debris flows.


2017 ◽  
Vol 17 (5) ◽  
pp. 801-815 ◽  
Author(s):  
Florian Frank ◽  
Brian W. McArdell ◽  
Nicole Oggier ◽  
Patrick Baer ◽  
Marc Christen ◽  
...  

Abstract. Debris-flow volumes can increase due to the incorporation of sediment into the flow as a consequence of channel-bed erosion along the flow path. This study describes a sensitivity analysis of the recently introduced RAMMS (Rapid Mass Movements) debris-flow entrainment model, which is intended to help solve problems related to predicting the runout of debris flows. The entrainment algorithm predicts the depth and rate of erosion as a function of basal shear stress based on an analysis of erosion measurements at the Illgraben catchment, Switzerland (Frank et al., 2015). Starting with a landslide-type initiation in the RAMMS model, the volume of entrained sediment was calculated for recent well-documented debris-flow events at the Bondasca and the Meretschibach catchments, Switzerland. The sensitivity to the initial landslide volume was investigated by systematically varying the initial landslide volume and comparing the resulting debris-flow volume with estimates from the field sites. In both cases, the friction coefficients in the RAMMS runout model were calibrated using the model, whereby the entrainment module was (1) inactivated to find plausible values for general flow properties by adjusting both coefficients (ξ and μ) and then (2) activated to further refine coefficient μ, which controls erosion (patterns). The results indicate that the model predicts plausible erosion volumes in comparison with field data. By including bulking due to entrainment in runout models, more realistic runout patterns are predicted in comparison to starting the model with the entire debris-flow volume (initial landslide plus entrained sediment). In particular, lateral bank overflow – not observed during these events – is prevented when using the sediment entrainment model, even in very steep (≈ 60–65 %) and narrow (4–6 m) torrent channels. Predicted sediment entrainment volumes are sensitive to the initial landslide volume, suggesting that the model may be useful for both reconstruction of historical events and the modeling of scenarios as part of a hazard analysis.


Author(s):  
Florian Frank ◽  
Brian W. McArdell ◽  
Nicole Oggier ◽  
Patrick Baer ◽  
Marc Christen ◽  
...  

Abstract. Debris flow volumes can increase due to the incorporation of sediment into the flow as a consequence of channel-bed erosion along the flow path. This study describes a sensitivity analysis of the recently-introduced RAMMS debris flow entrainment algorithm which is intended to help solve problems related to predicting the runout of debris flows. The entrainment algorithm predicts the depth and rate of erosion as a function of basal shear stress based on an analysis of erosion measurements at the Illgraben catchment, Switzerland (Frank et al., 2015). Starting with a landslide-type initiation in the RAMMS model, the volume of entrained sediment was calculated for recent well-documented debris-flow events at the Bondasca and the Meretschibach catchments, Switzerland. The sensitivity to the initial landslide volume was investigated by systematically varying the initial landslide volume and comparing the resulting debris-flow volume with estimates from the field sites. In both cases, the friction coefficients in the RAMMS runout model were calibrated using the model where the entrainment module was inactivated. The results indicate that the entrainment model predicts plausible erosion volumes in comparison with field data. By including bulking due to entrainment in runout models, more realistic runout patterns are predicted in comparison to starting the model with the entire debris-flow volume (initial landslide plus entrained sediment). In particular, lateral bank overflow – not observed during this event – is prevented when using the sediment entrainment model, even in very steep (≈ 60–65 %) and narrow (4–6 m) torrent channels. Predicted sediment entrainment volumes are sensitive to the initial landslide volume, suggesting that the model may be useful for both reconstruction of historical events as well as the modeling of scenarios as part of a hazard analysis.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 122
Author(s):  
Seokil Jeong ◽  
Junseon Lee ◽  
Chang Geun Song ◽  
Seung Oh Lee

Background/Objectives: Due to the extreme climate and the localized heavy rain, the frequency of debris flow has been increasing. Therefore, there is a growing expectation for accurate numerical analysis.Methods/Statistical analysis: We present a prediction method that can calculate the propagation length of the debris flow. This analysis indicates the relationship between the potential energy and the propagation length of the debris flow. To study the behavior of the debris flow accurately, the change in the momentum force must be considered; otherwise the calculation accuracy of the debris flow behavior is inevitably low.Findings: Entrainment is a common behavior in a debris flow that leads to changes in the momentum force. Here, we analyzed the change in the momentum force using a 2D simulation model that included entrainment. The results show how the debris flow behaves with changes in the momentum force. When entrainment is considered, the propagation length tends to be underestimated. With detailed information, the uncertainty in the prediction accuracy can be reduced.Improvements/Applications: If studies on the material properties of debris flow would be added, it will be possible to carry out various and accurate analysis of the debris flow  


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Kun-Ting Chen ◽  
Xiao-Qing Chen ◽  
Gui-Sheng Hu ◽  
Yu-Shu Kuo ◽  
Yan-Rong Huang ◽  
...  

In this study, we develop a dimensionless assessment method to evaluate landslide dam formation by considering the relationship between the run-out distance of a tributary debris flow and the width of the main stream, deposition thickness of the tributary debris flow, and the water depth of the main stream. Based on the theory of debris flow run-out distance and fan formation, landslide dam formation may result from a tributary debris flow as a result of two concurrent formation processes: (1) the run-out distance of the tributary debris flow must be greater than the width of the main stream, and (2) the minimum deposition thickness of the tributary debris flow must be higher than the in situ water depth of the main stream. At the confluence, one of four types of depositional scenarios may result: (1) the tributary debris flow enters into the main stream and forms a landslide dam; (2) the tributary debris flow enters into the main stream but overflow occurs, thus preventing complete blockage of the main stream; (3) the tributary debris flow enters into the main stream, does not reach the far bank, and sediment remains partially above the water elevation of the main stream; or (4) the tributary debris flow enters into the main stream, does not reach the far bank, and sediment is fully submerged in the main stream. This method was applied to the analysis of 11 tributary debris flow events during Typhoon Morakot, and the results indicate that the dimensionless assessment method can be used to estimate potential areas of landslide dam formation caused by tributary debris flows. Based on this method, government authorities can determine potential areas of landslide dam formation caused by debris flows and mitigate possible disasters accordingly through a properly prepared response plan, especially for early identification.


2013 ◽  
Vol 52 (7) ◽  
pp. 1554-1560 ◽  
Author(s):  
Andrea Toreti ◽  
Michelle Schneuwly-Bollschweiler ◽  
Markus Stoffel ◽  
Jürg Luterbacher

AbstractThis article addresses the role of large-scale circulation and thermodynamical features in the release of past debris flows in the Swiss Alps by using classification algorithms, potential instability, and convective time scale. The study is based on a uniquely dense dendrogeomorphic time series of debris flows covering the period 1872–2008, reanalysis data, instrumental time series, and gridded hourly precipitation series (1992–2006) over the area. Results highlight the crucial role of synoptic and mesoscale forcing as well as of convective equilibrium on triggering rainfalls. Two midtropospheric synoptic patterns favor anomalous southwesterly flow toward the area and high potential instability. These findings imply a certain degree of predictability of debris-flow events and can therefore be used to improve existing alert systems.


2014 ◽  
Vol 14 (11) ◽  
pp. 3043-3064 ◽  
Author(s):  
M. C. Rogelis ◽  
M. Werner

Abstract. A method for assessing regional debris flow susceptibility at the watershed scale, based on an index composed of a morphometric indicator and a land cover indicator, is proposed and applied in 106 peri-urban mountainous watersheds in Bogotá, Colombia. The indicator of debris flow susceptibility is obtained from readily available information common to most peri-urban mountainous areas and can be used to prioritise watersheds that can subsequently be subjected to detailed hazard analysis. Susceptibility is considered to increase with flashiness and the possibility of debris flows occurring. Morphological variables recognised in the literature to significantly influence flashiness and occurrence of debris flows are used to construct the morphometric indicator by applying principal component analysis. Subsequently, this indicator is compared with the results of debris flow propagation to assess its capacity in identifying the morphological conditions of a watershed that make it able to transport debris flows. Propagation of debris flows was carried out using the Modified Single Flow Direction algorithm, following identification of source areas by applying thresholds identified in the slope–area curve of the watersheds. Results show that the morphometric variables can be grouped into four indicators: size, shape, hypsometry and (potential) energy, with energy being the component that best explains the capability of a watershed to transport debris flows. However, the morphometric indicator was found to not sufficiently explain the records of past floods in the study area. Combining the morphometric indicator with land cover indicators improved the agreement and provided a more reliable assessment of debris flow susceptibility in the study area. The analysis shows that, even if morphometric parameters identify a high disposition to the occurrence of debris flow, improving land cover can reduce the susceptibility. However, if favourable morphometric conditions are present but deterioration of the land cover in the watershed takes place, then the susceptibility to debris flow events increases. The indicator of debris flow susceptibility is useful in the identification of flood type, which is a crucial step in flood risk assessment especially in mountainous environments, and it can be used as input for prioritisation of flood risk management strategies at regional level and for the prioritisation and identification of detailed flood hazard analysis. The indicator is regional in scope, and therefore it is not intended to constitute a detailed assessment but to highlight watersheds that could potentially be more susceptible to damaging floods than others in the same region.


2010 ◽  
Vol 10 (11) ◽  
pp. 2379-2390 ◽  
Author(s):  
J. Blahut ◽  
P. Horton ◽  
S. Sterlacchini ◽  
M. Jaboyedoff

Abstract. Debris flow hazard modelling at medium (regional) scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal), and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy). The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R), developed at the University of Lausanne (Switzerland). An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise mainly from the models applied and analysis scale, which are neglecting local controlling factors of debris flow hazard. The presented approach of debris flow hazard analysis, associating automatic detection of the source areas and a simple assessment of the debris flow spreading, provided results for consequent hazard and risk studies. However, for the validation and transferability of the parameters and results to other study areas, more testing is needed.


2003 ◽  
Vol 3 (6) ◽  
pp. 647-662 ◽  
Author(s):  
C. Huggel ◽  
A. Kääb ◽  
W. Haeberli ◽  
B. Krummenacher

Abstract. Debris flows triggered by glacier lake outbursts have repeatedly caused disasters in various high-mountain regions of the world. Accelerated change of glacial and periglacial environments due to atmospheric warming and increased anthropogenic development in most of these areas raise the need for an adequate hazard assessment and corresponding modelling. The purpose of this paper is to pro-vide a modelling approach which takes into account the current evolution of the glacial environment and satisfies a robust first-order assessment of hazards from glacier-lake outbursts. Two topography-based GIS-models simulating debris flows related to outbursts from glacier lakes are presented and applied for two lake outburst events in the southern Swiss Alps. The models are based on information about glacier lakes derived from remote sensing data, and on digital elevation models (DEM). Hydrological flow routing is used to simulate the debris flow resulting from the lake outburst. Thereby, a multiple- and a single-flow-direction approach are applied. Debris-flow propagation is given in probability-related values indicating the hazard potential of a certain location. The debris flow runout distance is calculated on the basis of empirical data on average slope trajectory. The results show that the multiple-flow-direction approach generally yields a more detailed propagation. The single-flow-direction approach, however, is more robust against DEM artifacts and, hence, more suited for process automation. The model is tested with three differently generated DEMs (including aero-photogrammetry- and satellite image-derived). Potential application of the respective DEMs is discussed with a special focus on satellite-derived DEMs for use in remote high-mountain areas.


Sign in / Sign up

Export Citation Format

Share Document