scholarly journals Monitoring the geodynamic behaviour of earthquake using Landsat 8-OLI time series data: case of Gorkha and Imphal

Author(s):  
Biswajit Nath ◽  
Zheng Niu ◽  
Shukla Acharjee ◽  
Hailang Qiao

Abstract. Prediction of earthquake in advance is really a challenging task for the scientific community till now. But research results from various scientists regarding lineament extraction using satellite imageries help us to way forward for earthquake monitoring study. For the present study, Landsat 8 OLI Time series data analyzed by integrating four different remote sensing and GIS software’s for automatic lineament extraction, its change, including lineament lengths and directions study by creating rose diagrams and finally vertical surface transect profile curve drawing. Two recent major earthquakes (in different geological settings Gorkha of Nepal 7.8 Mw and Imphal, Manipur of Eastern India 6.8 Mw) epicenter based single tile and corresponding same temporal scenes (three for before and one for after quake respectively) were considered for each case to perform lineament extraction, length variation and vertical surface transect profile change analysis. The research results witnessed major variations in lineament number, lineament length and its trends. The major trends found in an ESE-WNW, N-E, N-S, E-W, NNE-SSW directions and ESE-WSW, ESE-WNW, NE-SW on pre-earthquake scenes compared to post earthquake ESE-WNW, NE-SW, NNE-SSW were found for Gorkha, and ESE-WSW for Imphal regions respectively and in both cases, it was observed that the lineation trends return to its earlier status after an earthquake strike. The results obtained using the automated and geo-integrated methods compared cross validation with each other showed our method worked practically for earthquake monitoring and one can apply this new novel combined approach to predict the probable earthquake occurrence in advance just a few days before it strikes.

2020 ◽  
Vol 12 (11) ◽  
pp. 1876 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Hideki Saito

Developing accurate methods for estimating forest structures is essential for efficient forest management. The high spatial and temporal resolution data acquired by CubeSat satellites have desirable characteristics for mapping large-scale forest structural attributes. However, most studies have used a median composite or single image for analyses. The multi-temporal use of CubeSat data may improve prediction accuracy. This study evaluates the capabilities of PlanetScope CubeSat data to estimate canopy height derived from airborne Light Detection and Ranging (LiDAR) by comparing estimates using Sentinel-2 and Landsat 8 data. Random forest (RF) models using a single composite, multi-seasonal composites, and time-series data were investigated at different spatial resolutions of 3, 10, 20, and 30 m. The highest prediction accuracy was obtained by the PlanetScope multi-seasonal composites at 3 m (relative root mean squared error: 51.3%) and Sentinel-2 multi-seasonal composites at the other spatial resolutions (40.5%, 35.2%, and 34.2% for 10, 20, and 30 m, respectively). The results show that RF models using multi-seasonal composites are 1.4% more accurate than those using harmonic metrics from time-series data in the median. PlanetScope is recommended for canopy height mapping at finer spatial resolutions. However, the unique characteristics of PlanetScope data in a spatial and temporal context should be further investigated for operational forest monitoring.


2019 ◽  
Vol 11 (14) ◽  
pp. 1683 ◽  
Author(s):  
Yangchengsi Zhang ◽  
Long Guo ◽  
Yiyun Chen ◽  
Tiezhu Shi ◽  
Mei Luo ◽  
...  

High-precision maps of soil organic carbon (SOC) are beneficial for managing soil fertility and understanding the global carbon cycle. Digital soil mapping plays an important role in efficiently obtaining the spatial distribution of SOC, which contributes to precision agriculture. However, traditional soil-forming factors (i.e., terrain or climatic factors) have weak variability in low-relief areas, such as plains, and cannot reflect the spatial variation of soil attributes. Meanwhile, vegetation cover hinders the acquisition of the direct information of farmland soil. Thus, useful environmental variables should be utilized for SOC prediction and the digital mapping of such areas. SOC has an important effect on crop growth status, and remote sensing data can record the apparent spectral characteristics of crops. The normalized difference vegetation index (NDVI) is an important index reflecting crop growth and biomass. This study used NDVI time series data rather than traditional soil-forming factors to map SOC. Honghu City, located in the middle of the Jianghan Plain, was selected as the study region, and the NDVI time series data extracted from Landsat 8 were used as the auxiliary variables. SOC maps were estimated through stepwise linear regression (SLR), partial least squares regression (PLSR), support vector machine (SVM), and artificial neural network (ANN). Ordinary kriging (OK) was used as the reference model, while root mean square error of prediction (RMSEP) and coefficient of determination of prediction (R2P) were used to evaluate the model performance. Results showed that SOC had a significant positive correlation in July and August (0.17, 0.29) and a significant negative correlation in January, April, and December (−0.23, −0.27, and −0.23) with NDVI time series data. The best model for SOC prediction was generated by ANN, with the lowest RMSEP of 3.718 and highest R2P of 0.391, followed by SVM (RMSEP = 3.753, R2P = 0.361) and PLSR (RMSEP = 4.087, R2P = 0.283). The SLR model was the worst model, with the lowest R2P of 0.281 and highest RMSEP of 3.930. ANN and SVM were better than OK (RMSEP = 3.727, R2P = 0.372), whereas PLSR and SLR were worse than OK. Moreover, the prediction results using single-data NDVI or short time series NDVI showed low accuracy. The effect of the terrain factor on SOC prediction represented unsatisfactory results. All these results indicated that the NDVI time series data can be used for SOC mapping in plain areas and that the ANN model can maximally extract additional associated information between NDVI time series data and SOC. This study presented an effective method to overcome the selection of auxiliary variables for digital soil mapping in plain areas when the soil was covered with vegetation. This finding indicated that the time series characteristics of NDVI were conducive for predicting SOC in plains.


2017 ◽  
Author(s):  
Solveig H. Winsvold ◽  
Andreas Kääb ◽  
Christopher Nuth ◽  
Liss M. Andreassen ◽  
Ward van Pelt ◽  
...  

Abstract. With dense SAR satellite data time-series it is possible to map surface and subsurface glacier properties that vary in time. On Sentinel-1A and Radarsat-2 backscatter images over mainland Norway and Svalbard, we have used descriptive methods for outlining the possibilities of using SAR time-series for mapping glaciers. We present five application scenarios, where the first shows potential for tracking transient snow lines with SAR backscatter time-series, and correlates with both optical satellite images (Sentinel-2A and Landsat 8) and equilibrium line altitudes derived from in situ surface mass balance data. In the second application scenario, time-series representation of glacier facies corresponding to SAR glacier zones shows potential for a more accurate delineation of the zones and how they change in time. The third application scenario investigates the firn evolution using dense SAR backscatter time-series together with a coupled energy balance and multi-layer firn model. We find strong correlation between backscatter signals with both the modeled firn air-content and modeled wetness in the firn. In the fourth application scenario, we highlight how winter rain events can be detected in SAR time-series, revealing important information about the area extent of internal accumulation. Finally, in the last application scenario, averaged summer SAR images were found to have potential in assisting the process of mapping glaciers outlines, especially in the presence of seasonal snow. Altogether we present examples of how to map glaciers and to further understand glaciological processes using the existing and future massive amount of multi-sensor time-series data. Our results reveal the potential of satellite imagery for automatically derived products as important input in modeling assessments and glacier change analysis.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 139 ◽  
Author(s):  
Yingying Yang ◽  
Taixia Wu ◽  
Shudong Wang ◽  
Jing Li ◽  
Farhan Muhanmmad

Evergreen trees play a significant role in urban ecological services, such as air purification, carbon and oxygen balance, and temperature and moisture regulation. Remote sensing represents an essential technology for obtaining spatiotemporal distribution data for evergreen trees in cities. However, highly developed subtropical cities, such as Nanjing, China, have serious land fragmentation problems, which greatly increase the difficulty of extracting evergreen trees information and reduce the extraction precision of remote-sensing methods. This paper introduces a normalized difference vegetation index coefficient of variation (NDVI-CV) method to extract evergreen trees from remote-sensing data by combining the annual minimum normalized difference vegetation index (NDVIann-min) with the CV of a Landsat 8 time-series NDVI. To obtain an intra-annual, high-resolution time-series dataset, Landsat 8 cloud-free and partially cloud-free images over a three-year period were collected and reconstructed for the study area. Considering that the characteristic growth of evergreen trees remained nearly unchanged during the phenology cycle, NDVIann-min is the optimal phenological node to separate this information from that of other vegetation types. Furthermore, the CV of time-series NDVI considers all of the phenologically critical phases; therefore, the NDVI-CV method had higher extraction accuracy. As such, the approach presented herein represents a more practical and promising method based on reasonable NDVIann-min and CV thresholds to obtain spatial distribution data for evergreen trees. The experimental verification results indicated a comparable performance since the extraction accuracy of the model was over 85%, which met the classification accuracy requirements. In a cross-validation comparison with other evergreen trees’ extraction methods, the NDVI-CV method showed higher sensitivity and stability.


2018 ◽  
Vol 12 (3) ◽  
pp. 867-890 ◽  
Author(s):  
Solveig H. Winsvold ◽  
Andreas Kääb ◽  
Christopher Nuth ◽  
Liss M. Andreassen ◽  
Ward J. J. van Pelt ◽  
...  

Abstract. With dense SAR satellite data time series it is possible to map surface and subsurface glacier properties that vary in time. On Sentinel-1A and RADARSAT-2 backscatter time series images over mainland Norway and Svalbard, we outline how to map glaciers using descriptive methods. We present five application scenarios. The first shows potential for tracking transient snow lines with SAR backscatter time series and correlates with both optical satellite images (Sentinel-2A and Landsat 8) and equilibrium line altitudes derived from in situ surface mass balance data. In the second application scenario, time series representation of glacier facies corresponding to SAR glacier zones shows potential for a more accurate delineation of the zones and how they change in time. The third application scenario investigates the firn evolution using dense SAR backscatter time series together with a coupled energy balance and multilayer firn model. We find strong correlation between backscatter signals with both the modeled firn air content and modeled wetness in the firn. In the fourth application scenario, we highlight how winter rain events can be detected in SAR time series, revealing important information about the area extent of internal accumulation. In the last application scenario, averaged summer SAR images were found to have potential in assisting the process of mapping glaciers outlines, especially in the presence of seasonal snow. Altogether we present examples of how to map glaciers and to further understand glaciological processes using the existing and future massive amount of multi-sensor time series data.


Author(s):  
D. Dutta ◽  
P. K. Das ◽  
S. Paul ◽  
J. R. Sharma ◽  
V. K. Dadhwal

The mangrove ecosystem of Sundarbans region plays an important ecological and socio-economical role in both India and Bangladesh. The ecological disturbance in the coastal mangrove forests are mainly attributed to the periodic cyclones caused by deep depression formed over the Bay of Bengal. In the present study, three of the major cyclones in the Sundarbans region were analyzed to establish the cause-and-effect relationship between cyclones and the resultant ecological disturbance. The Moderate Resolution Imaging Spectroradiometer (MODIS) time-series data was used to generate MODIS global disturbance index (MGDI) and its potential was explored to assess the instantaneous ecological disturbance caused by cyclones with varying landfall intensities and at different stages of mangrove phenology. The time-series MGDI was converted into the percentage change in MGDI using its multi-year mean for each pixel, and its response towards several cyclonic events was studied. The affected areas were identified by analyzing the Landsat-8 satellite data before and after the cyclone and the MGDI values of the affected areas were utilized to develop the threshold for delineation of the disturbed pixels. The selected threshold was applied on the time-series MGDI images to delineate the disturbed areas for each year individually to identify the frequently disturbed areas. The classified intensity map could able to detect the chronically affected areas, which can serve as a valuable input towards modelling the biomigration of the invasive species and efficient forest management.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2236 ◽  
Author(s):  
Viviana Gavilán ◽  
Mario Lillo-Saavedra ◽  
Eduardo Holzapfel ◽  
Diego Rivera ◽  
Angel García-Pedrero

Efficient water management in agriculture requires a precise estimate of evapotranspiration ( E T ). Although local measurements can be used to estimate surface energy balance components, these values cannot be extrapolated to large areas due to the heterogeneity and complexity of agriculture environment. This extrapolation can be done using satellite images that provide information in visible and thermal infrared region of the electromagnetic spectrum; however, most current satellite sensors do not provide this end, but they do include a set of spectral bands that allow the radiometric behavior of vegetation that is highly correlated with the E T . In this context, our working hypothesis states that it is possible to generate a strategy of integration and harmonization of the Normalized Difference Vegetation Index ( N D V I ) obtained from Landsat-8 ( L 8 ) and Sentinel-2 ( S 2 ) sensors in order to obtain an N D V I time series used to estimate E T through fit equations specific to each crop type during an agricultural season (December 2017–March 2018). Based on the obtained results it was concluded that it is possible to estimate E T using an N D V I time series by integrating data from both sensors L 8 and S 2 , which allowed to carry out an updated seasonal water balance over study site, improving the irrigation water management both at plot and water distribution system scale.


2019 ◽  
Vol 11 (16) ◽  
pp. 1899 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue

The accurate and timely detection of forest disturbances can provide valuable information for effective forest management. Combining dense time series observations from optical and synthetic aperture radar satellites has the potential to improve large-area forest monitoring. For various disturbances, machine learning algorithms might accurately characterize forest changes. However, there is limited knowledge especially on the use of machine learning algorithms to detect forest disturbances through hybrid approaches that combine different data sources. This study investigated the use of dense Landsat 8 and Sentinel-1 time series data for detecting disturbances in tropical seasonal forests based on a machine learning algorithm. The random forest algorithm was used to predict the disturbance probability of each Landsat 8 and Sentinel-1 observation using variables derived from a harmonic regression model, which characterized seasonality and disturbance-related changes. The time series disturbance probabilities of both sensors were then combined to detect forest disturbances in each pixel. The results showed that the combination of Landsat 8 and Sentinel-1 achieved an overall accuracy of 83.6% for disturbance detection, which was higher than the disturbance detection using only Landsat 8 (78.3%) or Sentinel-1 (75.5%). Additionally, more timely disturbance detection was achieved by combining Landsat 8 and Sentinel-1. Small-scale disturbances caused by logging led to large omissions of disturbances; however, other disturbances were detected with relatively high accuracy. Although disturbance detection using only Sentinel-1 data had low accuracy in this study, the combination with Landsat 8 data improved the accuracy of detection, indicating the value of dense Landsat 8 and Sentinel-1 time series data for timely and accurate disturbance detection.


2018 ◽  
Vol 58 ◽  
pp. 01009
Author(s):  
Ludmiła Filina-Dawidowicz ◽  
Izabela Kotowska ◽  
Marta Mańkowska ◽  
Michał Pluciński

The aim of the research described in this article is to work out a method to estimate the demand for freight transport in a situation when no historical data are available, thus rendering it impossible to apply methods based on time series data. The method presented in this article was developed and verified on the basis of an analysis of potential inland shipping operations on the Oder Waterway to/from the seaports in Szczecin and Świnoujście, assuming that the waterway has been upgraded to navigability class III. The analysis was predicated on a demand survey performed among cargo shippers. The obtained research results made it possible to specify the advantages and drawbacks of forecasting based on qualitative methods, and to identify the factors which significantly reduce the reliability of freight transport forecasts.


Sign in / Sign up

Export Citation Format

Share Document