scholarly journals Field survey of the 2017 Typhoon Hato and a comparison with storm surge modeling in Macau

2018 ◽  
Author(s):  
Linlin Li ◽  
Jie Yang ◽  
Chuan-Yao Lin ◽  
Constance Ting Chua ◽  
Yu Wang ◽  
...  

Abstract. On August 23, 2017 a Category 3 Typhoon Hato struck Southern China. Among the hardest hit cities, Macau experienced the worst flooding since 1925. In this paper, we present a high-resolution survey map recording inundation depths and distances at 278 sites in Macau. We show that one half of the Macau Peninsula was inundated with the extent largely confined by the hilly topography. The Inner Harbor area suffered the most with the maximum inundation depth of 3.1 m at the coast. Using a combination of numerical models, we simulate and reproduce this typhoon and storm surge event. We further investigate the effects of tidal level and sea level rise on coastal inundations in Macau during the landfall of a Hato like event.

2018 ◽  
Vol 18 (12) ◽  
pp. 3167-3178 ◽  
Author(s):  
Linlin Li ◽  
Jie Yang ◽  
Chuan-Yao Lin ◽  
Constance Ting Chua ◽  
Yu Wang ◽  
...  

Abstract. On 23 August 2017 a Category 3 hurricane, Typhoon Hato, struck southern China. Among the hardest hit cities, Macau experienced the worst flooding since 1925. In this paper, we present a high-resolution survey map recording inundation depths and distances at 278 sites in Macau. We show that one-half of the Macau Peninsula was inundated, with the extent largely confined by the hilly topography. The Inner Harbor area suffered the most, with a maximum inundation depth of 3.1 m at the coast. Using a combination of numerical models, we simulate and reproduce this typhoon and storm surge event. We further investigate the effects of tidal level and sea level rise on coastal inundations in Macau during the landfall of a “Hato-like” event.


2006 ◽  
Vol 7 ◽  
pp. 371-378 ◽  
Author(s):  
L. Zampato ◽  
G. Umgiesser ◽  
S. Zecchetto

Abstract. Storm surge events occur in the Adriatic Sea, in particular during autumn and winter, often producing flooding in Venice. Sea levels are forecasted by numerical models, which require wind and pressure fields as input. Their performances depend crucially on the quality of those fields. The storm surge event on 16 November 2002 is analysed and simulated through a finite element hydrodynamic model of the Mediterranean Sea. Several runs were carried out, imposing different atmospheric forcings: wind fields from ECMWF analysis, high resolution winds from the limited area model LAMI and satellite observed winds from QuikSCAT (NASA). The performance of the hydrodynamic model in each case has been quantified. ECMWF fields are effective in reproducing the sea level in the northern Adriatic Sea, if the wind speed is enhanced by a suitable multiplying factor. High resolution winds from LAMI give promising results, permitting an accurate simulation of the sea level maxima. QuikSCAT satellite wind fields produce also encouraging results which claim, however, for further research.


2015 ◽  
Vol 15 (1) ◽  
pp. 1-24 ◽  
Author(s):  
S. Mariani ◽  
M. Casaioli ◽  
E. Coraci ◽  
P. Malguzzi

Abstract. High-resolution numerical models can be effective in monitoring and predicting natural hazards, especially when dealing with Mediterranean atmospheric and marine intense/severe events characterised by a wide range of interacting scales. The understanding of the key factors associated to these Mediterranean phenomena, and the usefulness of adopting high-resolution numerical models in their simulation, are among the aims of the international initiative HyMeX – HYdrological cycle in Mediterranean EXperiment. At the turn of 2013, two monitoring campaigns (SOPs – Special Observation Periods) were devoted to these issues. For this purpose, a new high-resolution BOlogna Limited Area Model-MOdello LOCale (BOLAM-MOLOCH) suite was implemented in the Institute for Environmental Protection and Research (ISPRA) hydro–meteo–marine forecasting system (SIMM – Sistema Idro-Meteo-Mare) as a possible alternative to the operational meteorological component based on the BOLAM model self-nested over two lower-resolution domains. The present paper provides an assessment of this new configuration of SIMM with respect to the operational one that was also used during the two SOPs. More in details, it investigates the forecast performance of these SIMM configurations during two of the Intense Observation Periods (IOPs) declared in the first SOP campaign. These IOPs were characterised by high precipitations and very intense and exceptional high waters over the northern Adriatic Sea (acqua alta). Concerning the meteorological component, the high-resolution BOLAM-MOLOCH forecasts are compared against the lower-resolution BOLAM forecasts over three areas – mostly corresponding to the Italian HyMeX hydrometeorological sites – using the rainfall observations collected in the HyMeX database. Three-month categorical scores are also calculated for the MOLOCH model. Despite the presence of a slight positive bias of the MOLOCH model, the results show that the precipitation forecast turns out to improve with increasing resolution. In both SIMM configurations, the sea storm surge component is based on the same version of the Shallow water HYdrodynamic Finite Element Model (SHYFEM). Hence, it is evaluated the impact of the meteorological forcing provided by the two adopted BOLAM configurations on the SHYFEM forecasts for six tide-gauge stations. A benchmark for this part of the study is given by the performance of the SHYFEM model forced by the ECMWF IFS forecast fields. For this component, both BOLAM-SHYFEM configurations clearly outperform the benchmark. The results are, however, strongly affected by the predictability of the weather systems associated to the IOPs, thus suggesting the opportunity to develop and test a time-lagged multi-model ensemble for the prediction of high storm surge events.


Author(s):  
Linlin Li ◽  
Jie Yang ◽  
Chuan-Yao Lin ◽  
Constance Ting Chua ◽  
Yu Wang ◽  
...  

Author(s):  
Vincentius P. Siregar ◽  
Sam Wouthuyzen ◽  
Andriani Sunuddin ◽  
Ari Anggoro ◽  
Ade Ayu Mustika

Shallow marine waters comprise diverse benthic types forming habitats for reef fish community, which important for the livelihood of coastal and small island inhabitants. Satellite imagery provide synoptic map of benthic habitat and further utilized to estimate reef fish stock. The objective of this research was to estimate reef fish stock in complex coral reef of Pulau Pari, by utilizing high resolution satellite imagery of the WorldView-2 in combination with field data such as visual census of reef fish. Field survey was conducted between May-August 2013 with 160 sampling points representing four sites (north, south, west, and east). The image was analy-zed and grouped into five classes of benthic habitats i.e., live coral (LC), dead coral (DC), sand (Sa), seagrass (Sg), and mix (Mx) (combination seagrass+coral and seagrass+sand). The overall accuracy of benthic habitat map was 78%. Field survey revealed that the highest live coral cover (58%) was found at the north site with fish density 3.69 and 1.50 ind/m2at 3 and 10 m depth, respectively. Meanwhile, the lowest live coral cover (18%) was found at the south site with fish density 2.79 and 2.18  ind/m2 at 3 and 10 m depth, respectively. Interpolation on fish density data in each habitat class resulted in standing stock reef fish estimation:  LC (5,340,698 ind), DC (56,254,356 ind), Sa (13,370,154 ind), Sg (1,776,195 ind) and Mx (14,557,680 ind). Keywords: mapping, satellite imagery, benthic habitat, reef fish, stock estimation


Author(s):  
Rikito Hisamatsu ◽  
Rikito Hisamatsu ◽  
Kei Horie ◽  
Kei Horie

Container yards tend to be located along waterfronts that are exposed to high risk of storm surges. However, risk assessment tools such as vulnerability functions and risk maps for containers have not been sufficiently developed. In addition, damage due to storm surges is expected to increase owing to global warming. This paper aims to assess storm surge impact due to global warming for containers located at three major bays in Japan. First, we developed vulnerability functions for containers against storm surges using an engineering approach. Second, we simulated storm surges at three major bays using the SuWAT model and taking global warming into account. Finally, we developed storm surge risk maps for containers based on current and future situations using the vulnerability function and simulated inundation depth. As a result, we revealed the impact of global warming on storm surge risks for containers quantitatively.


2010 ◽  
Vol 6 (S272) ◽  
pp. 398-399 ◽  
Author(s):  
Carol E. Jones ◽  
Christopher Tycner ◽  
Jessie Silaj ◽  
Ashly Smith ◽  
T. A. Aaron Sigut

AbstractHα high resolution spectroscopy combined with detailed numerical models is used to probe the physical conditions, such as density, temperature, and velocity of Be star disks. Models have been constructed for Be stars over a range in spectral types and inclination angles. We find that a variety of line shapes can be obtained by keeping the inclination fixed and changing density alone. This is due to the fact that our models account for disk temperature distributions self-consistently from the requirement of radiative equilibrium. A new analytical tool, called the variability ratio, was developed to identify emission-line stars at particular stages of variability. It is used in this work to quantify changes in the Hα equivalent widths for our observed spectra.


2017 ◽  
Vol 17 (9) ◽  
pp. 1559-1571 ◽  
Author(s):  
Yann Krien ◽  
Bernard Dudon ◽  
Jean Roger ◽  
Gael Arnaud ◽  
Narcisse Zahibo

Abstract. In the Lesser Antilles, coastal inundations from hurricane-induced storm surges pose a great threat to lives, properties and ecosystems. Assessing current and future storm surge hazards with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave–current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique under present climate or considering a potential sea level rise. Results confirm that the wave setup plays a major role in the Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge – up to 100 % in some cases. The nonlinear interactions of sea level rise (SLR) with bathymetry and topography are generally found to be relatively small in Martinique but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.


Sign in / Sign up

Export Citation Format

Share Document