scholarly journals Tectonic Origin Tsunami Scenario Database for the Marmara Region

Author(s):  
Ceren Ozer Sozdinler ◽  
Ocal Necmioglu ◽  
H. Basak Bayraktar ◽  
Nurcan M. Ozel

Abstract. This study presents the first tsunami scenario database in Marmara Sea, Turkey referring to 30 different earthquake scenarios obtained with the combinations of 32 possible fault segments. The fault mechanisms in Marmara Sea have been studied in detail within FP-7 MARSite project, which were derived from various databases and literature review. Tsunami simulations have been performed according to these defined 30 earthquake scenarios by tsunami numerical code NAMI DANCE (NAMIDANCE, 2011) which solves Nonlinear Shallow Water Equations (NLSWE) using leap-frog scheme. For each earthquake scenario, tsunami hydrodynamic parameters, mainly maximum water surface elevations, arrival time of first wave and maximum wave, and water level fluctuations were calculated at 1333 synthetic gauge points meticulously selected along the coasts of Marmara Sea. The overall simulation results indicate that maximum expected wave heights due to these earthquake scenarios are between 1 m and 2 m and even more than 2 m at some locations along Marmara coasts, such as Kadikoy, Halic and Silivri coasts in Istanbul and Bayramdere and Kursunlu districts along the coasts of Bursa province. The estimated maximum water levels at Bostanci, Pendik and Buyukada coasts in Istanbul, Cinarcik and Bandirma towns and at the entrance of Izmit Bay would reach up to 2 m. Tekirdag coasts and Buyuk Cekmece and Bakirkoy coasts in Istanbul and Yalova coasts would experience maximum tsunami wave amplitudes around 1.5 m. The waves reach up to 1 m at Izmit and Gemlik Bays, Erdek Peninsula and Marmara Island. The overwiew of the results reveal that higher historical tsunami wave heights observed in Marmara Sea cannot be explained by only earthquake-generated tsunamis. Therefore, there is strong agreement on considering submarine landslides as the primary tsunami hazard component in the Marmara Sea as experienced during history and expected in the future.

Author(s):  
Mohammad Heidarzadeh ◽  
Moharram D. Pirooz ◽  
Nasser H. Zaker

Although northwestern Indian Ocean has experienced some deadly tsunamis in the past, this region remains one of the least studied regions in the world and little research work has been devoted to its tsunami hazard assessment. In this study, we compile and analyze historical tsunami in the northwestern Indian Ocean and present a tsunami list for this region. Then, a deterministic method has been employed to give a preliminary estimation of the tsunami hazard faced by different coastlines in this region. Different source scenarios are considered and for each scenario, numerical modeling of tsunami is performed. For each case, the maximum positive tsunami wave heights along the coasts are calculated which provide a preliminary estimation of tsunami hazard and show which locations face the greatest threat from a large tsunami.


2006 ◽  
Vol 6 (6) ◽  
pp. 979-997 ◽  
Author(s):  
F. Løvholt ◽  
H. Bungum ◽  
C. B. Harbitz ◽  
S. Glimsdal ◽  
C. D. Lindholm ◽  
...  

Abstract. The primary background for the present study was a project to assist the authorities in Thailand with development of plans for how to deal with the future tsunami risk in both short and long term perspectives, in the wake of the devastating 26 December 2004 Sumatra-Andaman earthquake and tsunami. The study is focussed on defining and analyzing a number of possible future earthquake scenarios (magnitudes 8.5, 8.0 and 7.5) with associated return periods, each one accompanied by specific tsunami modelling. Along the most affected part of the western coast of Thailand, the 2004 tsunami wave caused a maximum water level ranging from 5 to 15 m above mean sea level. These levels and their spatial distributions have been confirmed by detailed numerical simulations. The applied earthquake source is developed based on available seismological and geodetic inversions, and the simulation using the source as initial condition agree well with sea level records and run-up observations. A conclusion from the study is that another megathrust earthquake generating a tsunami affecting the coastline of western Thailand is not likely to occur again for several hundred years. This is in part based on the assumption that the Southern Andaman Microplate Boundary near the Simeulue Islands constitutes a geologic barrier that will prohibit significant rupture across it, and in part on the decreasing subduction rates north of the Banda Ache region. It is also concluded that the largest credible earthquake to be prepared for along the part of the Sunda-Andaman arc that could affect Thailand, is within the next 50–100 years an earthquake of magnitude 8.5, which is expected to occur with more spatial and temporal irregularity than the megathrust events. Numerical simulations have shown such earthquakes to cause tsunamis with maximum water levels up to 1.5–2.0 m along the western coast of Thailand, possibly 2.5–3.0 m on a high tide. However, in a longer time perspective (say more than 50–100 years) the potentials for earthquakes of similar magnitude and consequences as the 2004 event will become gradually larger and eventually posing an unacceptable societal risk. These conclusions apply only to Thailand, since the effects of an M 8.5 earthquake in the same region could be worse for north-western Sumatra, the Andaman and Nicobar Islands, maybe even for Sri Lanka and parts of the Indian coastline. Moreover, further south along the Sunda arc the potentials for large ruptures are now much higher than for the region that ruptured on 26 December 2004.


Author(s):  
Л.В. Горбатенко

Рассматривались опасные гидрологические явления, связанные с высокими уровнями воды. На основе данных по 85 створам наблюдений за стоком на малых, средних и крупных реках прибрежной зоны Дальнего Востока за 2008-18 гг. проведена оценка максимальных (наивысших) годовых уровней воды. Рассчитаны внутригодовые средние и максимальные, а также межгодовые амплитуды колебаний уровней воды по каждому из створов. Проведена оценка наивысших уровней воды на основе критерия опасности - превышения значений уровней отметки опасного явления, определяемых территориальными подразделениями Росгидромета. Оценивались такие характеристики как частота, степень, а также генезис этого события. Выявлены территории региона, где опасные гидрологические события наблюдаются наиболее часто или являются наиболее сильными. Dangerous hydrological events associated with high water levels were considered. The maximum annual water levels were estimated on the basis of data from 85 stations of runoff observations on small, medium and large rivers in the coastal zone of the Far East in 2008-18. The intra-annual average and maximum, as well as inter-annual amplitudes of water level fluctuations were calculated. The maximum water levels were assessed with such hazard criterion as exceeding of the dangerous phenomenon value determined by the territorial divisions of the Federal Hydrometeorological Service. The following characteristics as the frequency, magnitude and genesis of this events were evaluated. The territories of the region with frequent or severe dangerous hydrological events are identified.


Author(s):  
Krum Videnov ◽  
Vanya Stoykova

Monitoring water levels of lakes, streams, rivers and other water basins is of essential importance and is a popular measurement for a number of different industries and organisations. Remote water level monitoring helps to provide an early warning feature by sending advance alerts when the water level is increased (reaches a certain threshold). The purpose of this report is to present an affordable solution for measuring water levels in water sources using IoT and LPWAN. The assembled system enables recording of water level fluctuations in real time and storing the collected data on a remote database through LoRaWAN for further processing and analysis.


2018 ◽  
Vol 934 (4) ◽  
pp. 46-52
Author(s):  
A.S. Bruskova ◽  
T.I. Levitskaya ◽  
D.M. Haydukova

Flooding is a dangerous phenomenon, causing emergency situations and causing material damage, capable of damaging health, and even death of people. To reduce the risk and economic damage from flooding, it is necessary to forecast flooding areas. An effective method of forecasting emergency situations due to flooding is the method of remote sensing of the Earth with integration into geoinformation systems. With the help of satellite imagery, a model of flooding was determined based on the example of Tavda, the Sverdlovsk Region. Space images are loaded into the geoinformation system and on their basis a series of thematic layers is created, which contains information about the zones of possible flooding at given water level marks. The determination of the area of flooding is based on the calculation of the availability of maximum water levels at hydrological stations. According to the calculated security data, for each hydrological post, flood zones are constructed by interpolation between pre-calculated flood zones of standard security. The results of the work can be used by the Main Directorate of the Ministry for Emergency Situations of Russia for the Sverdlovsk Region.


2021 ◽  
Vol 112 ◽  
pp. 102711
Author(s):  
Soheil Radfar ◽  
Mehdi Shafieefar ◽  
Hassan Akbari ◽  
Panagiota A. Galiatsatou ◽  
Ahmad Rezaee Mazyak

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 449
Author(s):  
Yashira Marie Sánchez Colón ◽  
Fred Charles Schaffner

Laguna Cartagena is a coastal, eutrophic, shallow lake and freshwater wetland in southwestern Puerto Rico, managed by the US Fish and Wildlife Service. This ecosystem has been impacted by phosphorus loading from adjacent agricultural areas since the 1950s, causing eutrophication and deteriorating wildlife habitats. Herein, we describe phosphorus input and export during September 2010–September 2011 (Phase One) and October 2013–November 2014 (Phase Two). These two phases bracket a period of intensified management interventions including excavation and removal of sediment and vegetation, draining, and burning during the summers of 2012 and 2013. Results indicate that Laguna Cartagena retains a phosphorus (sink) in its sediments, and exhibits nutrient-releasing events (source, mainly total phosphorus) to the lagoon water column, which are associated with rainfall and rising water levels. External factors including water level fluctuations and rainfall influenced phosphorus export during Phase One, but after management interventions (Phase Two), internal processes influenced sink/source dynamics, releasing elevated phosphorus concentrations to the water column. When exposed sediments were re-flooded, phosphorus concentrations to the water column increased, releasing elevated P concentrations downstream to an estuarine wetlands area and the Caribbean Sea. Herein we offer management recommendations to optimize wildlife habitat without elevating phosphorus concentrations.


2021 ◽  
Vol 31 (5) ◽  
pp. 1373-1395
Author(s):  
Iman Mazinani ◽  
Mohammad Mohsen Sarafraz ◽  
Zubaidah Ismail ◽  
Ahmad Mustafa Hashim ◽  
Mohammad Reza Safaei ◽  
...  

Purpose Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges. Thus, experimental tests in a wave flume and a fluid structure interaction (FSI) analysis were constructed to gain insight into tsunami bore force on coastal bridges. Design/methodology/approach Various wave heights and shallow water were used in the experiments and computational process. A 1:40 scaled concrete bridge model was placed in mild beach profile similar to a 24 × 1.5 × 2 m wave flume for the experimental investigation. An Arbitrary Lagrange Euler formulation for the propagation of tsunami solitary and bore waves by an FSI package of LS-DYNA on high-performance computing system was used to evaluate the experimental results. Findings The excellent agreement between experiments and computational simulation is shown in results. The results showed that the fully coupled FSI models could capture the tsunami wave force accurately for all ranges of wave heights and shallow depths. The effects of the overturning moment, horizontal, uplift and impact forces on a pier and deck of the bridge were evaluated in this research. Originality/value Photos and videos captured during the Indian Ocean tsunami in 2004 and the 2011 Japan tsunami showed solitary tsunami waves breaking offshore, along with an extremely turbulent tsunami-induced bore propagating toward shore with significantly higher velocity. Consequently, the outcomes of this current experimental and numerical study are highly relevant to the evaluation of tsunami bore forces on the coastal, over sea or river bridges. These experiments assessed tsunami wave forces on deck pier showing the complete response of the coastal bridge over water.


2010 ◽  
Vol 61 (3) ◽  
pp. 271 ◽  
Author(s):  
Jarod Lyon ◽  
Ivor Stuart ◽  
David Ramsey ◽  
Justin O'Mahony

Off-channel habitats, such as wetlands and backwaters, are important for the productivity of river systems and for many species of native fish. This study aimed to investigate the fish community, timing and cues that stimulated movement to and from off-channel habitats in the highly regulated Lake Hume to Lake Mulwala reach of the Murray River, south-eastern Australia. In 2004–05, 193 712 fish were collected moving bi-directionally between a 50-km section of the Murray River and several off-channel habitats. Lateral fish movements approximated water level fluctuations. Generally as water levels rose, fish left the main river channel and moved into newly flooded off-channel habitats; there was bi-directional movement as water levels peaked; on falling levels fish moved back to the permanent riverine habitats. Fish previously classified as ‘wetland specialists’, such as carp gudgeons (Hypseleotris spp.), have a more flexible movement and life-history strategy including riverine habitation. The high degree of lateral movement indicates the importance of habitat connectivity for the small-bodied fish community. Wetlands adjacent to the Murray River are becoming increasingly regulated by small weirs and ensuring lateral fish movement will be important in maintaining riverine-wetland biodiversity.


Sign in / Sign up

Export Citation Format

Share Document