scholarly journals Stochastic System Dynamics Modelling for climate change water scarcity assessment on a reservoir in the Italian Alps

2021 ◽  
Author(s):  
Stefano Terzi ◽  
Janez Sušnik ◽  
Stefan Schneiderbauer ◽  
Silvia Torresan ◽  
Andrea Critto

Abstract. Water management in mountain regions is facing multiple pressures due to climate change and anthropogenic activities. This is particularly relevant for mountain areas where water abundance in the past allowed for many anthropogenic activities, exposing them to future water scarcity. To better understand the processes involved in water scarcity impact, an innovative stochastic System Dynamics Modelling (SDM) explores water stored and turbined in the S.Giustina reservoir (Province of Trento, Italy). The integration of outputs from climate change simulations as well as from a hydrological model and statistical models into the SDM is a quick and effective tool to simulate past and future water availability and demand conditions. Short-term RCP4.5 simulations depict conditions of highest volume and outflow reductions starting in spring (−16.1 % and −44.7 % in May compared to the baseline). Long-term RCP8.5 simulations suggest conditions of volume and outflow reductions starting in summer and lasting until the end of the year. The number of events with stored water below the 30th and above the 80th quantiles suggest a general reduction both in terms of low and high volumes. These results call for the need to adapt to acute short-term water availability reductions in spring and summer while preparing for hydroelectric production reductions due to the chronic long-term trends affecting autumn and mid-winter. This study provides results and methodological insights for potential SDM upscaling across strategic mountain socio-economic sectors (e.g., hydropower, agriculture and tourism) to expand water scarcity assessments and prepare for future multi-risk conditions and impacts.

2021 ◽  
Vol 21 (11) ◽  
pp. 3519-3537
Author(s):  
Stefano Terzi ◽  
Janez Sušnik ◽  
Stefan Schneiderbauer ◽  
Silvia Torresan ◽  
Andrea Critto

Abstract. Water management in mountain regions is facing multiple pressures due to climate change and anthropogenic activities. This is particularly relevant for mountain areas where water abundance in the past allowed for many anthropogenic activities, exposing them to future water scarcity. Here stochastic system dynamics modelling (SDM) was implemented to explore water scarcity conditions affecting the stored water and turbined outflows in the Santa Giustina (S. Giustina) reservoir (Autonomous Province of Trento, Italy). The analysis relies on a model chain integrating outputs from climate change simulations into a hydrological model, the output of which was used to test and select statistical models in an SDM for replicating turbined water and stored volume within the S. Giustina dam reservoir. The study aims at simulating future conditions of the S. Giustina reservoir in terms of outflow and volume as well as implementing a set of metrics to analyse volume extreme conditions. Average results on 30-year slices of simulations show that even under the short-term RCP4.5 scenario (2021–2050) future reductions for stored volume and turbined outflow are expected to be severe compared to the 14-year baseline (1999–2004 and 2009–2016; −24.9 % of turbined outflow and −19.9 % of stored volume). Similar reductions are expected also for the long-term RCP8.5 scenario (2041–2070; −26.2 % of turbined outflow and −20.8 % of stored volume), mainly driven by the projected precipitations having a similar but lower trend especially in the last part of the 2041–2070 period. At a monthly level, stored volume and turbined outflow are expected to increase for December to March (outflow only), January to April (volume only) depending on scenarios and up to +32.5 % of stored volume in March for RCP8.5 for 2021–2050. Reductions are persistently occurring for the rest of the year from April to November for turbined outflows (down to −56.3 % in August) and from May to December for stored volume (down to −44.1 % in June). Metrics of frequency, duration and severity of future stored volume values suggest a general increase in terms of low volume below the 10th and 20th percentiles and a decrease of high-volume conditions above the 80th and 90th percentiles. These results point at higher percentage increases in frequency and severity for values below the 10th percentile, while volume values below the 20th percentile are expected to last longer. Above the 90th percentile, values are expected to be less frequent than baseline conditions, while showing smaller severity reductions compared to values above the 80th percentile. These results call for the adoption of adaptation strategies focusing on water demand reductions. Months of expected increases in water availability should be considered periods for water accumulation while preparing for potential persistent reductions of stored water and turbined outflows. This study provides results and methodological insights that can be used for future SDM upscaling to integrate different strategic mountain socio-economic sectors (e.g. hydropower, agriculture and tourism) and prepare for potential multi-risk conditions.


2020 ◽  
Author(s):  
Stefano Terzi ◽  
Janez Sušnik ◽  
Sara Masia ◽  
Silvia Torresan ◽  
Stefan Schneiderbauer ◽  
...  

<p>Mountain regions are facing multiple impacts due to climate change and anthropogenic activities. Shifts in precipitation and temperature are affecting the available water influencing a variety of economic activities that still rely on large quantities of water (e.g. ski tourism, energy production and agriculture). The Alps are among those areas where recent events of decreased water availability triggered emerging water disputes and spread of economic impacts across multiple sectors and from upstream high water availability areas to downstream high water demand areas. In order to make our water management systems more resilient, there is a need to unravel the interplays and dependencies that can lead to multiple impacts across multiple sectors. However, current assessments dealing with climate change usually account for a mono sectoral and single risk perspective.</p><p>This study hence shows an integrative assessment of multi-risk processes across strategic sectors of the Alpine economy. System dynamics modelling (SDM) is applied as a powerful tool to evaluate the multiple impacts stemming from interactions and feedbacks among water-food-energy economic sectors of the Noce river catchment in the Province of Trento (Italy).</p><p>The SDM developed for the Noce catchment combined outputs from physically based models to evaluate water availability and statistical assessments for water demands from three main sectors: (i) apple orchards cultivation, (ii) water releases from large dam reservoirs for hydropower production and (iii) domestic and seasonal tourism activities.</p><p>Hydrological results have been validated on historical time series (i.e. 2009-2017) and projected in the future considering RCP 4.5 and 8.5 climate change scenarios for 2021-2050 medium term and 2041-2070 long term. Results show a precipitation decrease affecting river streamflow with consequences on water stored and turbined in all dam reservoirs of the Noce catchment, especially for long-term climate change scenarios. Moreover, temperature scenarios will increase the amount of water used for agricultural irrigation from upstream to downstream. Nevertheless, decreasing population projections will have a beneficial reduction of water demand from residents, counterbalancing the increasing demand from the other sectors.</p><p>Finally, the integrated SDM fostered discussions in the Noce catchment on interplays between climate change and anthropogenic activities to tackle climate-related water scarcity.</p>


2012 ◽  
Vol 440 ◽  
pp. 290-306 ◽  
Author(s):  
Janez Sušnik ◽  
Lydia S. Vamvakeridou-Lyroudia ◽  
Dragan A. Savić ◽  
Zoran Kapelan

Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Yuan Gong ◽  
Christina L. Staudhammer ◽  
Susanne Wiesner ◽  
Gregory Starr ◽  
Yinlong Zhang

Understanding plant phenological change is of great concern in the context of global climate change. Phenological models can aid in understanding and predicting growing season changes and can be parameterized with gross primary production (GPP) estimated using the eddy covariance (EC) technique. This study used nine years of EC-derived GPP data from three mature subtropical longleaf pine forests in the southeastern United States with differing soil water holding capacity in combination with site-specific micrometeorological data to parameterize a photosynthesis-based phenological model. We evaluated how weather conditions and prescribed fire led to variation in the ecosystem phenological processes. The results suggest that soil water availability had an effect on phenology, and greater soil water availability was associated with a longer growing season (LOS). We also observed that prescribed fire, a common forest management activity in the region, had a limited impact on phenological processes. Dormant season fire had no significant effect on phenological processes by site, but we observed differences in the start of the growing season (SOS) between fire and non-fire years. Fire delayed SOS by 10 d ± 5 d (SE), and this effect was greater with higher soil water availability, extending SOS by 18 d on average. Fire was also associated with increased sensitivity of spring phenology to radiation and air temperature. We found that interannual climate change and periodic weather anomalies (flood, short-term drought, and long-term drought), controlled annual ecosystem phenological processes more than prescribed fire. When water availability increased following short-term summer drought, the growing season was extended. With future climate change, subtropical areas of the Southeastern US are expected to experience more frequent short-term droughts, which could shorten the region’s growing season and lead to a reduction in the longleaf pine ecosystem’s carbon sequestration capacity.


2021 ◽  
Vol 1 ◽  
pp. 427-436
Author(s):  
Sanghyun Oh ◽  
Yoo S. Hong ◽  
Jihwan Lee ◽  
Yong Se Kim

AbstractTo pursue business innovation with PSS, many different PSS concepts are designed and evaluated. Various business models of a PSS design concept are devised and evaluated as well. Evaluation of the economic sustainability of PSS business models is critical. This paper presents a systematic method to evaluate the economic sustainability of PSS business models using a system dynamics modelling template. System dynamics modelling task is challenging for practitioners due to the variety of variables comprising business model strategies and their complex interrelationships. To enable the modelling task, a system dynamics modelling template composed of six modules of customer acquisition, channel acquisition, profit creation, resource acquisition, PSS provision, and partnership pattern has been devised. The PSS business model evaluation method has been illustrated using a smart study experience management service system design case to demonstrate the proposed system dynamics modelling template can reflect the case-specific business model which consists of the particular business model strategies.


Sign in / Sign up

Export Citation Format

Share Document