scholarly journals Vertical profiles of wind gust statistics from a regional reanalysis using multivariate extreme value theory

2019 ◽  
Author(s):  
Julian Steinheuer ◽  
Petra Friederichs

Abstract. Many applications require wind gust estimates at very different atmospheric height levels. For example, the renewable energy sector is interested in wind and gust predictions at the hub height of a wind power plant. However, numerical weather prediction models typically derive estimates for wind gusts at the standard measurement height of 10 m above the land surface only. Here, we present a statistical post-processing to derive a conditional distribution for hourly peak wind speed as a function of height. The conditioning variables are taken from the regional reanalysis COSMO-REA6. The post-processing is trained using peak wind speed observations at five vertical levels between 10 m and 250 m of the Hamburg Weather Mast. The statistical post-processing is based on a censored generalized extreme value (cGEV) distribution with non-stationary parameters. We use a least absolute shrinkage and selection operator to select the most informative variables. Vertical variations of the cGEV parameters are approximated using Legendre polynomials, such that predictions may be derived at any desired vertical height. Further, the Pickands dependence function is used to assess dependencies between gusts at different heights. The most important predictors are the 10 m gust diagnostic, the barotropic and the baroclinic mode of absolute horizontal wind speed, the mean absolute horizontal wind in 700 hPa, the surface pressure tendency, and the lifted index. Proper scores show improvements with respect to climatology of up to 60 % especially at higher vertical levels. The post-processing model with a Legendre approximation is able to provide reliable predictions of gusts statistics at non-observed intermediate levels. The strength of dependency between gusts at different levels is non-stationary and strongly modulated by the vertical stability of the atmosphere.

2020 ◽  
Author(s):  
Julian Steinheuer ◽  
Petra Friederichs

<div>Wind and gust statistics at the hub height of a wind turbine are important parameters for the planning in the renewable energy sector. However, reanalyses based on numerical weather prediction models typically only give estimates for wind gusts at the standard measurement height of 10 m above the land surface. We present here a statistical post-processing that gives a conditional distribution for hourly peak wind speeds as a function of height. The conditioning variables are provided by the regional reanalysis COSMO-REA6. The post-processing is developed on the basis of observations of the peak wind speed in five vertical layers between 10 m and 250 m of the Hamburg Weather Mast. The statistical post-processing is based on a censored generalized extreme value (cGEV) distribution with non-stationary parameters. To select the most meaningful variables we use a least absolute shrinkage and selection operator. The vertical variation of the cGEV parameters is approximated using Legendre polynomials, allowing gust prediction at any desired height within the training range. Furthermore, the Pickands dependence function is used to investigate dependencies between gusts at different heights. The main predictors are the 10 m gust diagnosis, the barotropic and baroclinic modes of absolute horizontal wind speed, the mean absolute horizontal wind in 700 hPa, the surface pressure tendency and the lifted index. Proper scores show improvements of up to 60 %, especially at higher vertical levels when compared to climatology. The post-processing model with a Legendre approximation is able to provide reliable predictions of gust statistics at unobserved intermediate levels. The strength of the dependence between the gusts at different levels is not stationary and strongly modulated by the vertical stability of the atmosphere.</div>


2020 ◽  
Vol 27 (2) ◽  
pp. 239-252
Author(s):  
Julian Steinheuer ◽  
Petra Friederichs

Abstract. Many applications require wind gust estimates at very different atmospheric height levels. For example, the renewable energy sector is interested in wind and gust predictions at the hub height of a wind power plant. However, numerical weather prediction models typically only derive estimates for wind gusts at the standard measurement height of 10 m above the land surface. Here, we present a statistical post-processing method to derive a conditional distribution for hourly peak wind speed as a function of height. The conditioning variables are taken from the COSMO-REA6 regional reanalysis. The post-processing method was trained using peak wind speed observations at five vertical levels between 10 and 250 m from the Hamburg Weather Mast. The statistical post-processing method is based on a censored generalized extreme value (cGEV) distribution with non-homogeneous parameters. We use a least absolute shrinkage and selection operator to select the most informative variables. Vertical variations of the cGEV parameters are approximated using Legendre polynomials, such that predictions may be derived at any desired vertical height. Further, the Pickands dependence function is used to assess dependencies between gusts at different heights. The most important predictors are the 10 m gust diagnostic, the barotropic and the baroclinic mode of absolute horizontal wind speed, the mean absolute horizontal wind at 700 hPa, the surface pressure tendency, and the lifted index. Proper scores show improvements of up to 60 % with respect to climatology, especially at higher vertical levels. The post-processing model with a Legendre approximation is able to provide reliable predictions of gusts' statistics at non-observed intermediate levels. The strength of dependency between gusts at different levels is non-homogeneous and strongly modulated by the vertical stability of the atmosphere.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4169
Author(s):  
Giovanni Gualtieri

The reliability of ERA5 reanalyses for directly predicting wind resources and energy production has been assessed against observations from six tall towers installed over very heterogeneous sites around the world. Scores were acceptable at the FINO3 (Germany) offshore platform for both wind speed (bias within 1%, r = 0.95−0.96) and capacity factor (CF, at worst biased by 6.70%) and at the flat and sea-level site of Cabauw (Netherlands) for both wind speed (bias within 7%, r = 0.93−0.94) and CF (bias within 6.82%). Conversely, due to the ERA5 limited resolution (~31 km), large under-predictions were found at the Boulder (US) and Ghoroghchi (Iran) mountain sites, and large over-predictions were found at the Wallaby Creek (Australia) forested site. Therefore, using ERA5 in place of higher-resolution regional reanalysis products or numerical weather prediction models should be avoided when addressing sites with high variation of topography and, in particular, land use. ERA5 scores at the Humansdorp (South Africa) coastal location were generally acceptable, at least for wind speed (bias of 14%, r = 0.84) if not for CF (biased by 20.84%). However, due to the inherent sea–land discontinuity resulting in large differences in both surface roughness and solar irradiation (and thus stability conditions), a particular caution should be paid when applying ERA5 over coastal locations.


2018 ◽  
Author(s):  
Tobias Ahsbahs ◽  
Merete Badger ◽  
Patrick Volker ◽  
Kurt S. Hansen ◽  
Charlotte B. Hasager

Abstract. Rapid growth in the offshore wind energy sector means more offshore wind farms are placed closer to each other and in the lee of large land masses. Synthetic Aperture Radar (SAR) offers maps of the wind speed offshore with high resolution over large areas. These can be used to detect horizontal wind speed gradients close to shore and wind farm wake effects. SAR observations have become much more available with the free and open access to data from European satellite missions through Copernicus. Examples of applications and tools for using large archives of SAR wind maps to aid offshore site assessment are few. The Anholt wind farm operated by the utility company Ørsted is located in coastal waters and experiences strong spatial variations in the mean wind speed. Wind speeds derived from the Supervisory Control And Data Acquisition (SCADA) system are available at the turbine locations for comparison with winds retrieved from SAR. The correlation is good, both for free stream and waked conditions. Spatial wind speed variations within the wind farm derived from SAR wind maps prior to the wind farm construction are found to agree well with information gathered by the SCADA system and numerical weather prediction models. Wind farm wakes are detected by comparisons between images before and after the wind farm construction. SAR wind maps clearly show wakes for long constant fetches but the wake effect is less pronounced for short varying fetches. Our results suggest that SAR wind maps can support offshore wind energy site assessment by introducing observations in the early phases of wind farm projects.


2020 ◽  
Author(s):  
Sam Allen ◽  
Chris Ferro ◽  
Frank Kwasniok

<p>Raw output from deterministic numerical weather prediction models is typically subject to systematic biases. Although ensemble forecasts provide invaluable information regarding the uncertainty in a prediction, they themselves often misrepresent the weather that occurs. Given their widespread use, the need for high-quality wind speed forecasts is well-documented. Several statistical approaches have therefore been proposed to recalibrate ensembles of wind speed forecasts, including a heteroscedastic censored regression approach. An extension to this method that utilises the prevailing atmospheric flow is implemented here in a quasigeostrophic simulation study and on reforecast data. It is hoped that this regime-dependent framework can alleviate errors owing to changes in the synoptic-scale atmospheric state. When the wind speed strongly depends on the underlying weather regime, the resulting forecasts have the potential to provide substantial improvements in skill upon conventional post-processing techniques. This is particularly pertinent at longer lead times, where there is more improvement to be gained upon current methods, and in weather regimes associated with wind speeds that differ greatly from climatology. In order to realise this potential, however, an accurate prediction of the future atmospheric regime is required.</p>


Author(s):  
Benjamin D. Youngman ◽  
David B. Stephenson

We develop a statistical framework for simulating natural hazard events that combines extreme value theory and geostatistics. Robust generalized additive model forms represent generalized Pareto marginal distribution parameters while a Student’s t -process captures spatial dependence and gives a continuous-space framework for natural hazard event simulations. Efficiency of the simulation method allows many years of data (typically over 10 000) to be obtained at relatively little computational cost. This makes the model viable for forming the hazard module of a catastrophe model. We illustrate the framework by simulating maximum wind gusts for European windstorms, which are found to have realistic marginal and spatial properties, and validate well against wind gust measurements.


2007 ◽  
Vol 135 (6) ◽  
pp. 2168-2184 ◽  
Author(s):  
Gregory L. West ◽  
W. James Steenburgh ◽  
William Y. Y. Cheng

Abstract Spurious grid-scale precipitation (SGSP) occurs in many mesoscale numerical weather prediction models when the simulated atmosphere becomes convectively unstable and the convective parameterization fails to relieve the instability. Case studies presented in this paper illustrate that SGSP events are also found in the North American Regional Reanalysis (NARR) and are accompanied by excessive maxima in grid-scale precipitation, vertical velocity, moisture variables (e.g., relative humidity and precipitable water), mid- and upper-level equivalent potential temperature, and mid- and upper-level absolute vorticity. SGSP events in environments favorable for high-based convection can also feature low-level cold pools and sea level pressure maxima. Prior to 2003, retrospectively generated NARR analyses feature an average of approximately 370 SGSP events annually. Beginning in 2003, however, NARR analyses are generated in near–real time by the Regional Climate Data Assimilation System (R-CDAS), which is identical to the retrospective NARR analysis system except for the input precipitation and ice cover datasets. Analyses produced by the R-CDAS feature a substantially larger number of SGSP events with more than 4000 occurring in the original 2003 analyses. An oceanic precipitation data processing error, which resulted in a reprocessing of NARR analyses from 2003 to 2005, only partially explains this increase since the reprocessed analyses still produce approximately 2000 SGSP events annually. These results suggest that many NARR SGSP events are not produced by shortcomings in the underlying Eta Model, but by the specification of anomalous latent heating when there is a strong mismatch between modeled and assimilated precipitation. NARR users should ensure that they are using the reprocessed NARR analyses from 2003 to 2005 and consider the possible influence of SGSP on their findings, particularly after the transition to the R-CDAS.


2018 ◽  
Author(s):  
Rochelle P. Worsnop ◽  
Michael Scheuerer ◽  
Thomas M. Hamill ◽  
Julie K. Lundquist

Abstract. Wind power forecasting is gaining international significance as more regions promote policies to increase the use of renewable energy. Wind ramps, large variations in wind power production during a period of minutes to hours, challenge utilities and electrical balancing authorities. A sudden decrease in wind energy production must be balanced by other power generators to meet energy demands, while a sharp increase in unexpected production results in excess power that may not be used in the power grid, leading to a loss of potential profits. In this study, we compare different methods to generate probabilistic ramp forecasts from the High Resolution Rapid Refresh (HRRR) numerical weather prediction model with up to twelve hours of lead time at two tall-tower locations in the United States. We validate model performance using 21 months of 80-m wind speed observations from towers in Boulder, Colorado and near the Columbia River Gorge in eastern Oregon. We employ four statistical post-processing methods, three of which are not currently used in the literature for wind forecasting. These procedures correct biases in the model and generate short-term wind speed scenarios which are then converted to power scenarios. This probabilistic enhancement of HRRR point forecasts provides valuable uncertainty information of ramp events and improves the skill of predicting ramp events over the raw forecasts. We compute Brier skill scores for each method at predicting up- and down-ramps to determine which method provides the best prediction. We find that the Standard Schaake Shuffle method yields the highest skill at predicting ramp events for these data sets, especially for up-ramp events at the Oregon site. Increased skill for ramp prediction is limited at the Boulder, CO site using any of the multivariate methods, because of the poor initial forecasts in this area of complex terrain. These statistical methods can be implemented by wind farm operators to generate a range of possible wind speed and power scenarios to aid and optimize decisions before ramp events occur.


2011 ◽  
Vol 50 (6) ◽  
pp. 1225-1235 ◽  
Author(s):  
Zhigang Yao ◽  
Jun Li ◽  
Jinlong Li ◽  
Hong Zhang

AbstractAn accurate land surface emissivity (LSE) is critical for the retrieval of atmospheric temperature and moisture profiles along with land surface temperature from hyperspectral infrared (IR) sounder radiances; it is also critical to assimilating IR radiances in numerical weather prediction models over land. To investigate the impact of different LSE datasets on Atmospheric Infrared Sounder (AIRS) sounding retrievals, experiments are conducted by using a one-dimensional variational (1DVAR) retrieval algorithm. Sounding retrievals using constant LSE, the LSE dataset from the Infrared Atmospheric Sounding Interferometer (IASI), and the baseline fit dataset from the Moderate Resolution Imaging Spectroradiometer (MODIS) are performed. AIRS observations over northern Africa on 1–7 January and 1–7 July 2007 are used in the experiments. From the limited regional comparisons presented here, it is revealed that the LSE from the IASI obtained the best agreement between the retrieval results and the ECMWF reanalysis, whereas the constant LSE gets the worst results when the emissivities are fixed in the retrieval process. The results also confirm that the simultaneous retrieval of atmospheric profile and surface parameters could reduce the dependence of soundings on the LSE choice and finally improve sounding accuracy when the emissivities are adjusted in the iterative retrieval. In addition, emissivity angle dependence is investigated with AIRS radiance measurements. The retrieved emissivity spectra from AIRS over the ocean reveal weak angle dependence, which is consistent with that from an ocean emissivity model. This result demonstrates the reliability of the 1DVAR simultaneous algorithm for emissivity retrieval from hyperspectral IR radiance measurements.


Sign in / Sign up

Export Citation Format

Share Document