scholarly journals Nonlinear analysis of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea

2018 ◽  
Vol 25 (2) ◽  
pp. 291-300 ◽  
Author(s):  
Berenice Rojo-Garibaldi ◽  
David Alberto Salas-de-León ◽  
María Adela Monreal-Gómez ◽  
Norma Leticia Sánchez-Santillán ◽  
David Salas-Monreal

Abstract. Hurricanes are complex systems that carry large amounts of energy. Their impact often produces natural disasters involving the loss of human lives and materials, such as infrastructure, valued at billions of US dollars. However, not everything about hurricanes is negative, as hurricanes are the main source of rainwater for the regions where they develop. This study shows a nonlinear analysis of the time series of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea obtained from 1749 to 2012. The construction of the hurricane time series was carried out based on the hurricane database of the North Atlantic basin hurricane database (HURDAT) and the published historical information. The hurricane time series provides a unique historical record on information about ocean–atmosphere interactions. The Lyapunov exponent indicated that the system presented chaotic dynamics, and the spectral analysis and nonlinear analyses of the time series of the hurricanes showed chaotic edge behavior. One possible explanation for this chaotic edge is the individual chaotic behavior of hurricanes, either by category or individually regardless of their category and their behavior on a regular basis.

2017 ◽  
Author(s):  
Berenice Rojo-Garibaldi ◽  
David Alberto Salas-de-León ◽  
María Adela Monreal-Gómez ◽  
Norma Leticia Sánchez-Santillán ◽  
David Salas-Monreal

Abstract. Hurricanes are complex systems that carry large amounts of energy. Their impact produces, the majority of the time, natural disasters involving the loss of human lives and of materials and infrastructure in billions of US dollars. However, not everything is negative, as hurricanes are the main source of rainwater for the regions where they develop. In this study, we perform a nonlinear analysis of the time series obtained from 1749 to 2012 of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea. The construction of the hurricane time series was carried out based on the hurricane database of The North Atlantic-basin Hurricane Database (HURDAT), and the published historical information. The Lyapunov exponent indicated that the system presented chaotic dynamics, and the time-series’ spectral analysis along with the nonlinear analysis of the hurricanes time series showed chaotic edge behavior. One possible explanation for this edge is the individual chaotic behavior of hurricanes, either by category or individually, regardless of their category, and their behavior on a regular basis.


2010 ◽  
Vol 23 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Ernesto Muñoz ◽  
Chunzai Wang ◽  
David Enfield

Abstract The influence of teleconnections on the Intra-Americas Sea (IAS; Gulf of Mexico and Caribbean Sea) has been mostly analyzed from the perspective of El Niño–Southern Oscillation (ENSO) on the Caribbean Sea (the latter being an extension of the tropical North Atlantic). This emphasis has overlooked both 1) the influence of other teleconnections on the IAS and 2) which teleconnections affect the Gulf of Mexico climate variability. In this study the different fingerprints that major teleconnection patterns have on the IAS during boreal spring are analyzed. Indices of teleconnection patterns are regressed and correlated to observations of oceanic temperature and atmospheric data from reanalyses and observational datasets. It is found that the Pacific teleconnection patterns that influence the IAS SSTs do so by affecting the Gulf of Mexico in an opposite manner to the Caribbean Sea. These analyzed Pacific climate patterns are the Pacific–North American (PNA) teleconnection, the Pacific decadal oscillation (PDO), and ENSO. The North Atlantic Oscillation (NAO) is related to a lesser degree with the north–south SST anomaly dipole than are Pacific teleconnection patterns. It is also found that the IAS influence from the midlatitude Pacific mostly affects the Gulf of Mexico, whereas the influence from the tropical Pacific mostly affects the Caribbean Sea. Therefore, the combination of a warm ENSO event and a positive PNA event induces a strong IAS SST anomaly dipole between the Gulf of Mexico and the Caribbean Sea during spring. By calculating an index that represents the IAS SST anomaly dipole, it is found that the dipole forms mostly in response to changes in the air–sea heat fluxes. In the Gulf of Mexico the dominant mechanisms are the air–sea differences in humidity and temperature. The changes in shortwave radiation also contribute to the dipole of net air–sea heat flux. The changes in shortwave radiation arise, in part, by the cloudiness triggered by the air–sea differences in humidity, and also by the changes in the convection cell that connects the Amazon basin to the IAS. Weaker Amazon convection (e.g., in the event of a warm ENSO event) reduces the subsidence over the IAS, and henceforth the IAS cloudiness increases (and the shortwave radiation decreases). This study contributes to a greater understanding of how the IAS is influenced by different Pacific and Atlantic teleconnections.


2018 ◽  
Author(s):  
Paulina Ordoñez ◽  
Raquel Nieto ◽  
Yolande L. Serra ◽  
Luis Gimeno ◽  
Pedro Ribera ◽  
...  

Abstract. This work examines the origin of atmospheric water vapor arriving to the North American Monsoon (NAM) region over a 34-yr period (1981–2014) by using a Lagrangian diagnosis method. This methodology computes budgets of evaporation minus precipitation by calculating changes in the specific humidity of thousands of air particles advected into the study area by the observed winds. During the NAM wet season, on average the recycling process is the main water vapor source, followed by the supply of moisture from the Gulf of California. However, the water vapor transport that generates synoptic-scale rainfall comes primarily from the Caribbean Sea, the Gulf of Mexico and terrestrial eastern Mexico. An additional moisture source over the southwestern US is also identified in association with synoptic rainfall events over the NAM region. A high (low) moisture supply from the Caribbean Sea and the Gulf of Mexico from 4 to 6 days before precipitation events is responsible for high (low) rainfall intensity on synoptic scales during the monsoon peak. Westward propagating mid to upper level inverted troughs (IVs) seem to favor these water vapor fluxes. A 200 % increase in the moisture flux from the Caribbean Sea is related to the occurrence of heavy precipitation in the NAM area, accompanied by a decrease in water vapor advection from the Gulf of California.


2008 ◽  
Vol 82 (1) ◽  
pp. 69-76 ◽  
Author(s):  
A.K. Bashirullah ◽  
M.T. Diaz

AbstractThe qualitative and quantitative parameters of temporal distribution ofCucullanus tripapillatusandCucullanus chrysophrydesin the intestine ofOrthopristis ruberin the Caribbean Sea on the north of Margarita Island, Venezuela were analysed. A total of 540 fish were collected at random from the catch of commercial trawlers during 1982–83 and 1992–93. Both species ofCucullanuswere found throughout the year; prevalence and mean intensity ofC. tripapillatuswere higher than that ofC. chrysophrydes. A significant difference was found in infection between the two years of sampling. Female worms were more abundant than male in both years. Both species exhibited pronounced prevalence and maturity in September and March of each year, indicating seasonality. The patterns of occurrence of the two species ofCucullanusinO. ruberdid not change in the 10-year interval but the host size and number of parasites declined, which may be due to over-exploitation of definitive fish hosts.


Zootaxa ◽  
2012 ◽  
Vol 3210 (1) ◽  
pp. 50 ◽  
Author(s):  
CLARA MARÍA HEREU ◽  
EDUARDO SUÁREZ-MORALES

In waters of the Northwestern Atlantic pelagic tunicates may contribute significantly to the plankton biomass; however, theregional information on the salp fauna is scarce and limited to restricted sectors. In the Caribbean Sea (CS) and the Gulf ofMexico (GOM) the composition of the salpid fauna is still poorly known and this group remains among the less studiedzooplankton taxa in the Northwestern Tropical Atlantic. A revised checklist of the salp species recorded in the North At-lantic (NA, 0–40° N) is provided herein, including new information from the Western Caribbean. Zooplankton sampleswere collected during two cruises (March 2006, January 2007) within a depth range of 0–941 m. A total of 14 species wererecorded in our samples, including new records for the CS and GOM area (Cyclosalpa bakeri Ritter 1905), for the CS (Cy-closalpa affinis (Chamisso, 1819)), and for the Western Caribbean (Salpa maxima Forskål, 1774). The number of speciesof salps known from the CS and GOM rose to 18. A key for the identification of the species recorded in the region is provided. Studies on the ecological role of salps in several sectors of the NA are scarce and deserve further attention.


2018 ◽  
Vol 46 (1) ◽  
pp. 121-135
Author(s):  
Amílcar Vélez Flores ◽  
Javier Martín-Vide ◽  
Rafael Méndez-Tejeda ◽  
Dominic Royé

2018 ◽  
Vol 168 ◽  
pp. 296-309 ◽  
Author(s):  
M. Casanova-Masjoan ◽  
T.M. Joyce ◽  
M.D. Pérez-Hernández ◽  
P. Vélez-Belchí ◽  
A. Hernández-Guerra

Zootaxa ◽  
2018 ◽  
Vol 4471 (2) ◽  
pp. 245 ◽  
Author(s):  
VÍCTOR M. CONDE-VELA

Pseudonereis gallapagensis Kinberg, 1865 and P. variegata (Grube & Kröyer in Grube, 1858) are the only two species of this genus commonly recorded along Atlantic American coasts, but their type localities are in the Eastern Pacific, and their morphology differs. Two new Pseudonereis species are described from Eastern Mexico: P. brunnea sp. n. from the Gulf of Mexico, and P. citrina sp. n. from the Caribbean Sea, previously confused with P. gallapagensis. In order to facilitate comparisons, descriptions based on specimens from near the type locality for P. gallapagensis (Peru and Ecuador), and topotypes for P. variegata (Valparaiso, Chile), are included. Based on these comparisons and current descriptions, the synonymies of Nereis ferox Hansen, 1882 described from Brazil with P. variegata, and of Pseudonereis formosa Kinberg, 1865 described from Hawaii with P. gallapagensis, are rejected. Consequently, both are regarded as distinct species and revised diagnoses are provided for them. The record of P. ferox from the Gulf of Guinea proved to be an undescribed species, and is herein described as P. fauveli sp. n. The number of paragnath rows in nereidid pharynx areas VII–VIII has been interpreted in several ways, leading to confusion; an alternative method to determine the number of bands and rows is proposed. The midventral region, the division of areas VII–VIII in furrow and ridge regions, and the description of the arrangement based on the pattern of paragnaths in such regions, are proposed. Further, the terms shield-shaped and pointed (P-bars) bars are redefined, and a new term, crescent-shaped bars, is proposed for paragnaths in the areas VI in some Pseudonereis and Perinereis species. A key for all Pseudonereis species is also included. 


Sign in / Sign up

Export Citation Format

Share Document