Changes across 66°W, the Caribbean Sea and the Western boundaries of the North Atlantic Subtropical Gyre

2018 ◽  
Vol 168 ◽  
pp. 296-309 ◽  
Author(s):  
M. Casanova-Masjoan ◽  
T.M. Joyce ◽  
M.D. Pérez-Hernández ◽  
P. Vélez-Belchí ◽  
A. Hernández-Guerra
Zootaxa ◽  
2012 ◽  
Vol 3210 (1) ◽  
pp. 50 ◽  
Author(s):  
CLARA MARÍA HEREU ◽  
EDUARDO SUÁREZ-MORALES

In waters of the Northwestern Atlantic pelagic tunicates may contribute significantly to the plankton biomass; however, theregional information on the salp fauna is scarce and limited to restricted sectors. In the Caribbean Sea (CS) and the Gulf ofMexico (GOM) the composition of the salpid fauna is still poorly known and this group remains among the less studiedzooplankton taxa in the Northwestern Tropical Atlantic. A revised checklist of the salp species recorded in the North At-lantic (NA, 0–40° N) is provided herein, including new information from the Western Caribbean. Zooplankton sampleswere collected during two cruises (March 2006, January 2007) within a depth range of 0–941 m. A total of 14 species wererecorded in our samples, including new records for the CS and GOM area (Cyclosalpa bakeri Ritter 1905), for the CS (Cy-closalpa affinis (Chamisso, 1819)), and for the Western Caribbean (Salpa maxima Forskål, 1774). The number of speciesof salps known from the CS and GOM rose to 18. A key for the identification of the species recorded in the region is provided. Studies on the ecological role of salps in several sectors of the NA are scarce and deserve further attention.


2010 ◽  
Vol 23 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Ernesto Muñoz ◽  
Chunzai Wang ◽  
David Enfield

Abstract The influence of teleconnections on the Intra-Americas Sea (IAS; Gulf of Mexico and Caribbean Sea) has been mostly analyzed from the perspective of El Niño–Southern Oscillation (ENSO) on the Caribbean Sea (the latter being an extension of the tropical North Atlantic). This emphasis has overlooked both 1) the influence of other teleconnections on the IAS and 2) which teleconnections affect the Gulf of Mexico climate variability. In this study the different fingerprints that major teleconnection patterns have on the IAS during boreal spring are analyzed. Indices of teleconnection patterns are regressed and correlated to observations of oceanic temperature and atmospheric data from reanalyses and observational datasets. It is found that the Pacific teleconnection patterns that influence the IAS SSTs do so by affecting the Gulf of Mexico in an opposite manner to the Caribbean Sea. These analyzed Pacific climate patterns are the Pacific–North American (PNA) teleconnection, the Pacific decadal oscillation (PDO), and ENSO. The North Atlantic Oscillation (NAO) is related to a lesser degree with the north–south SST anomaly dipole than are Pacific teleconnection patterns. It is also found that the IAS influence from the midlatitude Pacific mostly affects the Gulf of Mexico, whereas the influence from the tropical Pacific mostly affects the Caribbean Sea. Therefore, the combination of a warm ENSO event and a positive PNA event induces a strong IAS SST anomaly dipole between the Gulf of Mexico and the Caribbean Sea during spring. By calculating an index that represents the IAS SST anomaly dipole, it is found that the dipole forms mostly in response to changes in the air–sea heat fluxes. In the Gulf of Mexico the dominant mechanisms are the air–sea differences in humidity and temperature. The changes in shortwave radiation also contribute to the dipole of net air–sea heat flux. The changes in shortwave radiation arise, in part, by the cloudiness triggered by the air–sea differences in humidity, and also by the changes in the convection cell that connects the Amazon basin to the IAS. Weaker Amazon convection (e.g., in the event of a warm ENSO event) reduces the subsidence over the IAS, and henceforth the IAS cloudiness increases (and the shortwave radiation decreases). This study contributes to a greater understanding of how the IAS is influenced by different Pacific and Atlantic teleconnections.


2020 ◽  
Author(s):  
Kristofer Döös ◽  
Sara Berglund ◽  
Trevor Mcdougall ◽  
Sjoerd Groeskamp

<p>The North Atlantic Subtropical Gyre is shown to have a downward spiral flow beneath the mixed layer, where the water slowly gets denser, colder and fresher as it spins around the gyre. This path is traced with Lagrangian trajectories as they enter the Gyre in the Gulf Stream from the south until they exit through the North Atlantic Drift. The preliminary results indicate that these warm, saline waters from the south gradually becomes fresher, colder and denser due to mixing with waters originating from the North Atlantic. There are indications that there is also a diapycnal mixing, in the eastern part of the gyre due to mixing with the saline Mediterranean Waters, which would then be crucial for the Atlantic Meridional Overturning. The mixing in the rest of the gyre is dominated by isopycnic mixing, which transforms gradually the water into colder and fresher water as it spins down the gyre into the abyssal ocean before heading north.</p>


2007 ◽  
Vol 20 (20) ◽  
pp. 5021-5040 ◽  
Author(s):  
Chunzai Wang ◽  
Sang-ki Lee ◽  
David B. Enfield

Abstract The Atlantic warm pool (AWP) is a large body of warm water that comprises the Gulf of Mexico, the Caribbean Sea, and the western tropical North Atlantic. Located to its northeastern side is the North Atlantic subtropical high (NASH), which produces the tropical easterly trade winds. The easterly trade winds carry moisture from the tropical North Atlantic into the Caribbean Sea, where the flow intensifies, forming the Caribbean low-level jet (CLLJ). The CLLJ then splits into two branches: one turning northward and connecting with the Great Plains low-level jet (GPLLJ), and the other continuing westward across Central America into the eastern North Pacific. The easterly CLLJ and its westward moisture transport are maximized in the summer and winter, whereas they are minimized in the fall and spring. This semiannual feature results from the semiannual variation of sea level pressure in the Caribbean region owing to the westward extension and eastward retreat of the NASH. The NCAR Community Atmospheric Model and observational data are used to investigate the impact of the climatological annual mean AWP on the summer climate of the Western Hemisphere. Two groups of the model ensemble runs with and without the AWP are performed and compared. The model results show that the effect of the AWP is to weaken the summertime NASH, especially at its southwestern edge. The AWP also strengthens the summertime continental low over the North American monsoon region. In response to these pressure changes, the CLLJ and its moisture transport are weakened, but its semiannual feature does not disappear. The weakening of the easterly CLLJ increases (decreases) moisture convergence to its upstream (downstream) and thus enhances (suppresses) rainfall in the Caribbean Sea (in the far eastern Pacific west of Central America). Model runs show that the AWP’s effect is to always weaken the southerly GPLLJ. However, the AWP strengthens the GPLLJ’s northward moisture transport in the summer because the AWP-induced increase of specific humidity overcomes the weakening of southerly wind, and vice versa in the fall. Finally, the AWP reduces the tropospheric vertical wind shear in the main development region that favors hurricane formation and development during August–October.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Robert E. Hodges ◽  
James B. Elsner

The authors define the spatial response of hurricanes to extremes in the solar cycle. Using an equal-area hexagon tessellation, regional hurricane counts are examined during the period 1851–2010. The response features fewer hurricanes across the Caribbean, Gulf of Mexico, and along the eastern seaboard of the United States when sunspots are numerous. In contrast fewer hurricanes are observed in the central North Atlantic when sunspots are few. The sun-hurricane connection is as important as the El Niño Southern Oscillation toward statistically explaining regional hurricane occurrences.


Oceanography ◽  
2015 ◽  
Vol 28 (1) ◽  
pp. 114-123 ◽  
Author(s):  
Gilles Reverdin ◽  
◽  
Simon Morisset ◽  
Louis Marieé ◽  
Denis Bourras ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document